

Recent Progresses of Inorganic Scintillators for Future HEP Experiments

Ren-Yuan Zhu California Institute of Technology

November 29, 2022

Presentation in the CPAD Workshop 2022, Stony Brook

2019 DOE Basic Research Needs Study on Instrumentation for Calorimetry

Priority Research Direction **PRD**

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Snowmass 2022 White Paper "Materials for Future Calorimeters" arXiv 2203.07154, or <u>https://doi.org/10.48550/2203.07154</u> Fast/ultrafast, radiation hard and cost-effective active material

Why Inorganic Scintillators

• Precision photons and electrons enhance physics discovery potential.

• Crystal performance is well understood:

- The best possible energy resolution and position resolution;
- Good e/γ identification and reconstruction efficiency;
- Excellent jet mass resolution with dual readout,: C/S or F/S gate.

• Challenges at future HEP Experiments:

- Fast and radiation hard scintillators for the HL-LHC and FCC-hh;
- Ultrafast scintillators to break ps timing barrier & Mu2e-II ECAL;
- Cost-effective crystals for the proposed Higgs factory.

• Inorganic scintillators at Caltech Crystal Lab:

- Radiation hard LYSO:Ce and LuAG:Ce ceramics;
- Ultrafast BaF₂:Y crystals and Lu₂O₃:Yb ceramics;
- BGO, BSO & PWO crystals and heavy scintillating glasses.

arXiv: 2203.06731 and arXiv: 2203.06788

LYSO:Ce Crystals for CMS BTL

Crystals damaged by both proton and neutron. Damage by proton is larger than that from neutrons because of ionization energy loss in addition to displacement and nuclear breakup

RADiCAL: LYSO/LuAG Shashlik ECAL

arXiv: 2203.12806 (N35-6)

RADiation hard CALorimetry Reducing light path length to mitigate radiation damage effect Using radiation hard materials: LuAG:Ce ceramics excitation matches LYSO:Ce emission

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2022, Stony Brook

QD glass or polysiloxane)

LuAG:Ce Ceramics Radiation Hardness

IEEE TNS 69 (2022) 181-186

LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to $6.7 \times 10^{15} n_{eq}$ /cm² and $1.2 \times 10^{15} p$ /cm², promising for FCC-hh

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

THE OF TH

Light Output and Response Uniformity

Excellent longitudinal uniformity observed for a Φ0.6 ×120 mm³ LuAG:Ce ceramic excited by a 420 nm LED at different location, with a solid coupling to a quartz fiber, mimicking its application in RADiCAL

Ultrafast BaF₂:Y Calorimeter for Mu2e-II

Use ultrafast material to mitigate pile-up

Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV
Time resolution	σ < 500 ps
 Position resolution 	σ < 10 mm
 Radiation hardness Crystals Photosensors 	1 kGy/yr and a total of 10 ¹² <i>n</i> _1 MeV equivalent/cm ² total 3 x 10 ¹¹ <i>n</i> _1 MeV equivalent/cm ² total

Mu2e-I: 1,348 CsI of 34 x 34 x 200 mm³

Mu2e-II: 1,940 BaF₂:Y

Mu2e-II: arXiv:2203.07596

PIP-II/Mu2e-II: higher rates (~x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2022, Stony Brook

CsI+SiPM

BaF₂:Y for Calorimetry & Imaging

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

12000

10000

0008 g

6000

2000

0.4

0.2

í.

Intensity

Ц

450

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF_2 : Y and BaF_2 crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

A Puzzle of Long Decay Observed at APS

NIM A 940 (2019) 223-229

The decay time of BaF₂ measured at APS for septuplet X-ray bunches with 2.83 ns spacing is longer than 1 ns. This is suspected to be caused by the 15 m long cable used between the MCP-PMT and the MSO

Rise, decay and FWHM obtained by fitting temporal response

MCP-PMT 240 Temporal Response

A fit to response of the Photek MCP-PMT 240 for pico-second laser pulses shows both the rise and FWHM consistent with the specification

Photodetector	Active diameter (mm)	Spectral range (nm)	Peak Sen. (nm)	Gain	Rise time (ns)	FWHM (ns)
Photek MCP-PMT 240	40	160-850	280-450	1×10 ⁶	0.180	0.82
Hamamatsu MCP- PMT R3809U-50	11	160-850	430	3×10⁵	0.160	0.30
Photek MCP-PMT 110	10	160-850	280-450	1×10 ⁴	0.065	0.11
Photek MCP-PMT 210	10	160-850	280-450	1×10 ⁶	0.085	0.15
Hamamatsu PMT R2059	46	160-650	450	2×10 ⁷	1.3	

11/29/2022

11/29/2022

a.u.)

Amplitude

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2022, Stony Brook

Ultrafast response of 0.2/0.6/0.8 ns observed for BaF₂ and BaF₂:Y crystals

The response is consistent with the Photek MCP-PMT 240 specification

BaF_2 :Y $\Phi 10 \times 10 \text{ mm}^3$ BaF₂:Υ Φ10×10 mm 3.5 BaF_{2} :Y $\Phi 10 \times 10 \text{ mm}^{3}$ Photek MCP-PMT240, HV:-4200 V, Tyvek Wrapping 150 DSO Aglient 9254, Grease, Na-22 coincidence trigger pulse shape d - e^{-t/τ}r) + B 1.5 24 ± 0.05 ns = 0.59 ± 0.06 ns

Temporal Response: BaF, & BaF,:Y

 Lu_2O_3 : Yb ceramic of 9.4 g/cc shows an ultrafast decay time of **1.1 ns** by Am-241 with negligible slow component observed in integrated light output measurement

The Instrument Response Function

Intrinsic ultrafast response time can be extracted by taking out the IRF of the set-up. It was measured by fitting Cerenkov light pulse from a PbF₂ crystal, which agrees well with Photek spec.

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2022, Stony Brook

Fast and Ultrafast Inorganic Scintillators

arXiv:	2203.	06788

	BaF ₂	BaF ₂ :Y	Lu ₂ O ₃ :Yb	YAP:Yb	YAG:Yb	ZnO:Ga	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	9.42	5.35	4.56	5.67	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	2490	1870	1940	1975	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	0.81	2.59	3.53	2.51	2.51	1.14	1.45	2.59	1.63	1.37	3.10
R _M (cm)	3.1	3.1	1.72	2.45	2.76	2.28	2.20	2.07	2.15	2.45	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	18.1	23.1	25.2	22.2	20.9	20.9	20.6	23.1	21.5	19.5	27.8
Z _{eff}	51.0	51.0	67.3	32.8	29.3	27.7	27.8	63.7	58.7	32.8	50.6	57.1	32.8
dE/dX (MeV/cm)	6.52	6.52	11.6	7.91	7.01	8.34	8.82	9.55	9.22	7.91	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	370	350	350	380	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.0	1.96	1.87	2.1	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	0.95	0.19 ^d	0.36 ^d	2.6 ^d 4.0 ^d	6.5 0.5	100	35 ^e 48 ^e	9 32	190	16 15	80
Total Light yield (ph/MeV)	13,00 0	2,000	280	57 ^d	110 ^d	2,000 ^d	2,100	30,000	25,000 ^e	12,000	58,000	10,000	24,000
Decay time ^a (ns)	600 <mark>0.5</mark>	600 0.5	1.1 ^d	1.1 ^d	1.8 ^d	3.0 ^d 1.0 ^d	110 5.3	40	820 50	191 25	570 130	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	170	34 ^d	46 ^d	980 ^d	43	740	240	391	400	125	318
LY in 1 st ns /Total LY (%)	9.0	64	60	60	43	49	2.0	2.5	1.2	3.3	0.7	1.4	1.3
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.127	0.314	0.439	0.407	0.394	0.185	0.251	0.314	0.319	0.214	0.334

^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by Alpha particles; ^e 0.3 Mg at% co-doping; ^f Lu_{0.7}Y_{0.3}AlO₃:Ce.

11/29/2022

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2022, Stony Brook

The HHCAL Concept

300

200

100 E

1000

800

20

Corrected energy, 20 GeV

22.5

Corrected jet response and energy resolution, energy dependence 600

500

400

300

200

100

1600

1400

Corrected energy, 50 GeV

A. Para, H. Wenzel and S. McGill in Callor2012 Proceedings and A. Benaglia *et al.,* IEEE TNS **63** (2016) 574-579: a jet energy resolution at a level of 20%/ \sqrt{E} by HHCAL with dual readout of S/C or dual gate. M. Demarteau, 2021 CPAD Workshop

5x5 cm

10

Inorganic Scintillators: HHCAL

	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire :Ti	AFO Glass	DSB:Ce Glass ¹	BGS Glass ²	ABS Glass ³	DSB:Ce,Gd Glass ^{4,5}	HFG Glass ⁶
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	3.8	4.2	4.53	4.7 - 5.4 ^d	5.95
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁷	1420 ⁸	1550	?	1420 ⁸	570
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	3.36	2.62	2.41	2.14	1.74
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.90	3.52	3.33	3.09	2.56	2.45
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	32.8	31.8	28.8	24.2	23.2
Z _{eff} value	71.5	73.8	73.6	76.7	74.7	11.1	41.4	42.9	49.6	51.9	47.2	55.7
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	5.56	5.90	6.42	7.68	8.24
Emission Peak ^a (nm)	480	470	425 420	۸	420	300 750	365	440	430	396	440 460	325
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	١	١	١	١	١	1.50
LY (ph/MeV) ^c	7,500	1,500	130	١	150	7,900	450	~500	2,500	800	1,300	150
Decay Time ^a (ns)	300	100	30 10	۸	3	300 3200	40	180 30	400 90	1200 260	120, 400 50	25 8
d(LY)/dT (%/°C) ^c	-0.9	?	-2.5	١	?	?	?	-0.04	0.3	?	?	-0.37
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	?	2.0	2.0	?	2.0	?

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. At room temperature (20°C) with PMT QE taken out.

d. Gd loaded.

11/29/2022

1. E. Auffray, et al., J. Phys. Conf. Ser. 587, 2015

2. V. Dormenev, et al., NIMA 1015, 2021

3. G. Tang, et al., Opt. Mater. 130, 2022

4. R. W. Novotny, et al., J. Phys. Conf. Ser. 928, 2017

5. V. Dormenev, et al., the ATTRACT Final Conference

6. E. Auffray, et al., CERN-PPE/96-35, 1996

7. R. A. McCauley et al., Trans. Br. Ceram. Soc., 67. 1968

8. I. G. Oehlschlegel, Glastech. Ber. 44, 1971

Summary

The HL-LHC and FCC-hh require fast and radiation hard inorganic scintillator. The **RADiCAL** concept uses LuAG:Ce ceramics as wavelength shifter for LYSO:Ce crystals for an ultra-compact, fast timing and longitudinally segmented shashlik calorimeter. R&D is on-going to suppress the slow components in LuAG:Ce. An ultrafast BaF₂:Y calorimeter is proposed for Mu2e-II. R&D is on-going to investigate radiation hardness of large size BaF₂:Y crystals. A longitudinally segmented **Calvision** crystal ECAL with dual readout combined with the IDEA HCAL promises excellent EM and Hadronic resolutions for the proposed Higgs factory.

Homogeneous HCAL (HHCAL) promises the best jet mass resolution by total absorption. Crucial R&D is needed for cost-effective mass-produced inorganic scintillators

 Acknowledgements: DOE HEP Award DE-SC0011925

LYSO:Ce for CMS MIP Timing Detector

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹ Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR

Ultrafast inorganic scintillators would help to break the pico-second time barrier

11/29/2022

Expected Radiation for CMS MTD

CMS BTL/EMEC: 4.8/68 Mrad, 2.5/21 \times 10¹³ p/cm² & 3.2/24 \times 10¹⁴ n_{eq}/cm²

CMS MTD	η	n _{eq} (cm ⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.5E+14	2.8E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.7E+14	3.0E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.9E+14	3.2E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.5E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.0E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.3E+07	9.9E+13	1.1E+06	26	1020
Endcap	3.00	2.4E+15	2.7E+07	2.1E+14	2.3E+06	68	2700

Much higher at FCC-hh: up to 0.1/500 Grad and 3/500 x10¹⁶ n_{eq}/cm² at EMEC/EMF Aleksa *et al.,* Calorimeters for the FCC-hh CERN-FCCPHYS-2019-0003, Dec 23, 2019

11/29/2022

LYSO:Ce Radiation Hardness

IEEE TNS 63 (2016) 612-619

CMS LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eq}/cm²

Due to ionization energy loss in addition to displacement and nuclear breakup

11/29/2022

Ultrafast and Radiation Hard BaF₂

 BaF_2 has an ultrafast scintillation component @ 220 nm with 0.5 ns decay time and a much larger slow component @ 300 nm with 600 ns decay time.

Slow suppression may be achieved by rare earth doping, and/or solar-blind photo-detectors

BaF₂ shows saturated damage from 10 krad to 100 Mrad, indicating good radiation resistance against γ-rays

 $\begin{array}{l} \text{BaF}_2 \text{ also survives after proton} \\ \text{irradiation up to } 9.7 \times 10^{14} \text{ p/cm}^2, \\ \text{ and neutron irradiation up to} \\ 8.3 \times 10^{15} \, n_{\text{eq}}/\text{cm}^2 \end{array}$

11/29/2022

Presented by Ren-Yuan Zhu, Caltech, in the CPAD Workshop 2022, Stony Brook

1 Mrad Damage in Long BaF₂:Y

SIC 2017 BaF_2 : Y sample shows a similar performance as BaF_2 crystals Recovery is very small for the fast scintillation component

Diverse crystal quality at this stage of R&D, needs improvement

11/29/2022

Sapphire:Ti Emission and Transmittance

A weak emission at 325 nm with 150 ns decay time A strong emission at 755 nm with 3 µs decay time

ID	Dimension (mm³)	#	Polishing		
Tongji Al ₂ O ₃ :Ti-1,2	10×10×4	2	Two faces		
Tongji Al ₂ O ₃ :C-1,2	Φ7×1	2	Two faces		
Tongji Lu ₂ O ₃ :Yb	6.4×4.8×0.4	1	Two faces		
Tongji LuScO ₃ :Yb	Φ4.8×1.3	1	Two faces		

11/29/2022