

Hadron Induced Radiation Damage in Fast Heavy Inorganic Scintillators

Chen Hu, Christina Wang, Liyuan Zhang, <u>Ren-Yuan Zhu</u> California Institute of Technology Jon Kapustinsky, Xuan Li, Michael Mocko, Ron Nelson, Steve Wender, Zhehui Wang Los Alamos National Laboratory

June 2, 2022

Presentation in the 2022 LANSCE User Group Meeting, Los Alamos, NM

Why Inorganic Scintillators?

- Precision photons and electrons enhance physics discovery potential in HEP experiments.
- Performance of crystal calorimeters is well understood for e/γ, and is promising for jets measurements :
 - The best possible energy resolution and position resolution;
 - Good e/ γ identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout, either C/S and F/S gate.
- Challenges at future HEP Experiments:
 - Radiation hard scintillators at the energy frontier: HL-LHC and FCC-hh;
 - Ultra-fast scintillators at the intensity frontier: Mu2e-II;
 - Cost-effective crystals for Higgs factory.

Motivation: 2019 DOE Basic Research Needs

Study on Instrumentation: Calorimetry

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Goal: Development fast and ultrafast inorganic scintillators for future HEP and NP experiments: HL-LHC, FCC-hh and GHz Hard X-ray Imaging. Snowmass 2022 White Paper: https://arxiv.org/abs/2203.06731

PWO: Damage by Gammas, Protons & Neutrons

Use materials with monotonic damage: BaF₂, CsI, LYSO:Ce, LuAG:Ce

http://www.hep.caltech.edu/~zhu/t alks/ryz_161028_PWO_mon.pdf

6/2/2022

Damage Recovery after γ-rays

6/2/2022

Damage in PWO recovers at room temperature, requiring frequent calibration/monitoring

No recovery in BaF_2 , CsI and LYSO:Ce crystals, and LuAG:Ce ceramics, indicating dose-rate independent damage.

LANCE Experiments for Investigation on Hadron-Induced Damage in Inorganic Scintillators

Proton and Neutron irradiation carried out at the Blue Room & East Port of LANSCE starting 2014 and 2015, respectively

Year	2014	2015	2016	2017	2018	2022
800 MeV Protons at the Blue Room	6501	6990	7324	-	8051	9168
Broad Band Neutrons at the East Port	-	6991	7332	7638	_	_

Cancelled: Proton: 7640 (2017), 8362 (2019), 8588 (2020) & 8842 (2021) and Neutron: 8057 (2018), 8351 (2019) & 8507 (2020)

Thanks to the LANSCE PAC for awarding beam time for 9168 (2022)

Published Papers

Chen Hu, Liyuan Zhang, Ren-Yuan Zhu, Jin Li, Benxue Jiang, Jon Kapustinsky, Michael Mocko, Ron Nelson, Xuan Li, and Zhehui Wang, Hadron-Induced Radiation Damage in LuAG:Ce Scintillating Ceramics, IEEE TNS Nucl. Sci. 69 (2022) 181—186. 7638, 8051

Chen Hu, Fan Yang, Liyuan Zhang, Ren-Yuan Zhu, Jon Kapustinsky, Michael Mocko, Ron Nelson, and Zhehui Wang, *Neutron-Induced Radiation Damage in LYSO, BaF₂, and PWO Crystals*, IEEE TNS Nucl. Sci. **67** (2020) 1086-1092. 6991, 7332, 7638

Chen Hu, Fan Yang, Liyuan Zhang, Ren-Yuan Zhu, Jon Kapustinsky, Ron Nelson, and Zhehui Wang, Proton-Induced Radiation Damage in BaF₂, LYSO, and PWO Crystal Scintillators, IEEE TNS Nucl. Sci. **65** (2018) 1018-1024.

C. Hu, F. Yang, L. Zhang, R.-Y. Zhu, J. Kapustinsky, R. Nelson and Z. Wang, "Neutron-Induced Radiation Damage in BaF2, LYSO and PWO Crystals", paper N22-6 presented in NSS2017 and SCINT 2017 Conferences.

F. Yang, L. Zhang, R.-Y. Zhu, J. Kapustinsky, R. Nelson and Z. Wang, "Proton-Induced Radiation Damage in Fast Crystal Scintillators", SCINT 2017, IEEE Trans. Nucl. Sci, vol. 64, (2017) 665-672. 6501, 6990

F. Yang, L. Zhang, R.-Y. Zhu, J. Kapustinsky, R. Nelson and Z. Wang, "Proton-Induced Radiation Damage in BGO, LFS, PWO and a LFS/W/Quartz Capillary Shashlik Cell", paper N36-7 in NSS2016 Conference Record.

F. Yang, L. Zhang, R.-Y. Zhu, J. Kapustinsky, R. Nelson and Z. Wang, "Proton induced radiation damage in fast crystal scintillators," NIM A, vol. 824, (2016) 726-728.

6991

HINDOLOGIAL

Hadron Energy Spectra at the HL-LHC

FLUKA simulations: neutrons and charged hadrons are peaked at MeV and hundreds MeV respectively Proton and neutron irradiation was carried out in the Blue Room and East Port of LANSCE respectively

Presented by Ren-Yuan Zhu, Caltech, in the 2022 LANSCE User Group Meeting, Los Alamos, NM

Proton Irradiation at the Blue Room

Los Alamos Neutron Science Center (LANSCE)

Proton Irradiation at the Blue Room

Neutron Irradiation in the East Port

n/y/p Spectra and 1 MeV n_{eq}

MCNPX (Monte Carlo N-Particle eXtended) package used to calculate the n/g/p spectra tallied in the largest sample volume (averaging) with 1 MeV equivalent (n_{eq}) fluence calculated by using the damage factor in Silicon

Fast and Ultrafast Inorganic Scintillators

ANL APS: NIM A 940 (2019) 223-229 & Snowmass 2022 white paper https://doi.org/10.48550/arXiv/2203.06788

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm³)	4.89	4.89	5.67	5.35	4.56	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19ª	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110ª	2,100	30,000	25,000°	12,000	34,400	10,000	24,000
Decay timeª (ns)	600 0.5	600 0.5	<1	1.5	4	148 6	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
LY in 1 st ns/Total LY	9.2%	60%	31%	49%	22%	2.0%	2.5%	1.0%	3.3%	1.9%	1.3%	1.3%
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by alpha particles; ^e ceramic with 0.3 Mg at% co-doping; ^f density for composition Lu_{0.7}Y_{0.3}AlO₃:Ce

6/2/2022

LYSO:Ce for CMS Barrel Timing Layer

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹ Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR

Ultrafast inorganic scintillators would help to break the pico-second time barrier

Expected Radiation at the HL-LHC

CMS BTL/ETL: 4.8/68 Mrad, $2.5 \times 10^{13}/2.1 \times 10^{14}$ p/cm² & $2.9 \times 10^{14}/2.4 \times 10^{15}$ n_{eq}/cm²

CMS MTD	η	n _{eq} (cm⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.5E+14	2.8E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.7E+14	3.0E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.9E+14	3.2E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.5E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.0E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.3E+07	9.9E+13	1.1E+06	26	1020
Endcap	3.00	2.4E+15	2.7E+07	2.1E+14	2.3E+06	68	2700

FCC-hh: up to 0.1 & 500 Grad and $3x10^{16}$ & $5x10^{18}$ n_{eq}/cm² at EMEC & EMF, respectively M. Aleksa *et al.*, Calorimeters for the FCC-hh CERN-FCCPHYS-2019-0003, Dec 23, 2019

LYSO Radiation Hardness

LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eg}/cm²

NIM A 824 (2016) 726-728 IEEE TNS 64 (2017) 665-672 , 65 (2018) 1018-1024 IEEE TNS 67 (2020) 1086-1092 Experiment 6990, 7324 & 8051 30 Experiment 6991 & 7332 & 7638 Neutron IR CPI-LYSO-L irradiated by 800 MeV proton beam at LANL 10 OETLES 25×25×180 mm CTI-LSO-L OET LFS 14×14×1.5 mm³ 3IC-LYSO-25x25x200 mm³ SIC-LYSO-10x10x3 mr 20 Emission Weighted RIAC (m⁻¹ CC = 0.71**OET-LFS-L** SIC LYSO 10×10×5 mm³ Peak (m⁻¹) SG-LYSO-L <u>E</u> Tianle LYSO 10×10×3 mm³ SIC-LYSO-L ed by 24 GeV proton beam at CERN eak $A_0 = (1.4 \pm 0.5) \times 10^{-15}$ Fluence SIPAT-LYSO-L BOFT FS 14×14× SIC LYSO 14×14×1.5 mm³ Δ 10 Emission Emission 3 m⁻¹ **3 m** RIAC₄₃₀=(1.30±0.01)×10⁻¹⁴ Fluence at at RIAC RIAC 10 10 13 10 14 10¹⁵ 10¹⁶ 10 15 10⁸ 10 16 10⁵ 10^{6} 104 1 MeV n_{en} Fluence (cm⁻²) Integrated Dose (rad) Proton Fluence (cm⁻²)

Crystals damaged by both proton and neutron. Damage by proton is larger than that from neutrons because of ionization energy loss in addition to displacement and nuclear breakup

6/2/2022

LuAG:Ce Ceramics Radiation Hardness

LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to $6.7 \times 10^{15} n_{eq}$ /cm² and $1.2 \times 10^{15} p$ /cm², promising for FCC-hh

IEEE TNS 69 (2022) 181-186

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

RADICAL: LYSO/LuAG Shashlik ECAL

Excitation of LuAG:Ce ceramics matches well LYSO:Ce emission:

RADiation hard innovative CALorimetry Snowmass 2022 White Paper: https://doi.org/10.48550/arXiv.2203.12806

LuAG:Ce fiber

Φ1x40 mm³ SIC LuAG:Ce Ceramic LHPG fibers

			an Pringer	
(*************************************	na an company and an			
un hun hun hun hu	տահանդեր	ulululululululululululu		hining
10	1	12	13	4

6/2/2022

IEEE TNS 65 (2018) 752-757

Mu2e Calorimeter Requirements

Mu2e-I: 1,348 CsI			
Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV	'	
Time resolution	σ < 500 ps		
 Position resolution 	σ < 10 mm		and the second second
 Radiation hardness Crystals Photosensors 	1 kGy/yr and a total of $10^{12} n_1$ 3 x $10^{11} n_1$ MeV equivalent/cm ²	MeV equivalent/cm² total total	

J. Phys.: Conf. Ser. **928** (2017) 012017

Mu2e-II: 1,940 BaF₂:Y

Mu2e-II: arXiv:1802.02599

PIP-II/Mu2e-II: higher rates (~x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

Ultrafast and Radiation Hard BaF₂

NIMA 340 (1994) 442-457

 BaF_2 has an ultrafast scintillation component @ 220 nm with 0.5 ns decay time and a much larger slow component @ 300 nm with 600 ns decay time.

Slow suppression may be achieved by rare earth doping, and/or solar-blind photo-detectors

BaF₂ shows saturated damage from 10 krad to 100 Mrad, indicating good radiation resistance against γ-rays

 $\begin{array}{l} \text{BaF}_2 \text{ also survives after proton} \\ \text{irradiation up to } 9.7 \times 10^{14} \text{ p/cm}^2, \\ \text{ and neutron irradiation up to} \\ 8.3 \times 10^{15} \, n_{\text{eq}} \text{/cm}^2 \end{array}$

BaF₂:Y for Ultrafast Calorimetry

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

IEEE TNS 66 (2019) 1854-1860

NIMA **940** (2019) 223-239

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals: for GHz Hard X-ray Imaging

6/2/2022

Presented by Ren-Yuan Zhu, Caltech, in the 2022 LANSCE User Group Meeting, Los Alamos, NM

Summary

Inorganic scintillators were irradiated at LANSCE by 800 MeV protons and broad-band neutrons in the Blue Room and East Port respectively. Radiation damage induced by both protons and neutrons is observed. Proton-induced damage is larger than that from neutron because of ionization energy loss in addition to displacement and nuclear breakup.

Proton-induced damage in LYSO:Ce crystals from various vendors is consistent for 800 MeV from LANSCE and 24 GeV from CERN. It is also the same for one MeV equivalent neutrons. These results provide a solid foundation for using LYSO:Ce crystals in the CMS Barrel Timing Layer (BTL) project for the HL-LHC. Crystal QC for the CMS BTL project is on-going.

LuAG:Ce ceramics show a factor of two smaller RIAC than LYSO:Ce crystals against both neutrons and protons. This material is promising for the HL-LHC and FCC-hh. BaF₂ plates shows similar light output loss as LYSO:Ce at high fluence, consistent with the γ -ray result.

Our investigation will continue for on-going HEP experiments, and for understanding hadron-induced damage in various inorganic scintillators. The LANSCE facility at both the Blue Room and the East Port are important for such an investigation. **Availability is crucial.**

This work was supported in part by the US Department of Energy Grants DE-SC0011925 and DE-AC52-06NA25396