

Recent Progress on Inorganic Scintillators for Future High Energy Physics Experiments

Ren-Yuan Zhu

California Institute of Technology

August 1, 2021

Invited Paper (11838-18) Presented in the SPIE Optics + Photonics Conference at San Diego

Why Inorganic Scintillators?

- Precision e/ γ enhance physics discovery potential.
- Performance of total absorption crystal calorimeters is well understood for e/γ , and is also promising for jets:
 - The best possible energy resolution;
 - Good position resolution;
 - Good identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout: C/S light or S/L gate.
- HEP calorimetry requires novel inorganic scintillators:
 - RADiCAL for HL-LHC and FCC-hh: rad hard LYSO:Ce crystals and LuAG:Ce ceramics;
 - Ultrafast calorimetry for Mu2e-II: ultrafast BaF₂:Y crystals;
 - Calvision and HHCAL for the Higgs factory: cost-effective inorganic scintillators.

2019 DOE Basic Research Needs Study on Instrumentation: Calorimetry

https://science.osti.gov/-/media/hep/pdf/Reports/2020/DOE_Basic_Research_Needs_Study_on_High_Energy_Physics.pdf?la=en&hash=A5C00A96314706A0379368466710593A1A5C4482

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Fast/ultrafast, radiation hard and cost-effective inorganic scintillators needed to achieve energy, spatial and timing resolution for future HEP calorimetry [1] CPAD 2021 workshop: https://indico.fnal.gov/event/46746/timetable/#all.detailed

Fast and Ultrafast Inorganic Scintillators

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94 ^[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <mark>0.5</mark>	600 0.5	<1	1.5	4	148 <mark>6</mark>	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e. mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

Aug 1, 2021

LYSO:Ce for CMS Barrel Timing Layer

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹ Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR LYSO QC: Low temperature (-35°C) performance, RIN:_x, RIN:n, TID, TF:p and TF:n BTL: LYSO bars + SiPM read-out 3 x 3 x 50 mm³ IMS ► TK / ECAL interface ~ 45 mm thick $|\eta| < 1.45$ and $p_T > 0.7$ GeV ► Active area ~ 38 m² ; 332k channels ► Fluence at 3 ab⁻¹: 2×10¹⁴ n_{eq}/cm² ETL: Si with internal gain (LGAD) \triangleright On the HGC nose ~ 65 mm thick ► 1.6 < |η| < 3.0 ► Active area ~ 14 m²; ~ 8.5M channels \blacktriangleright Fluence at 3 ab⁻¹: up to 2×10¹⁵ n_{ed}/cm² LYSO + SiPM with Thermal Electric Cooler (TEC) for CMS Barrel Timing Layer (BTL) in construction Mockup

SiPM array prototypes from FBK

Aug 1, 2021

LYSO Radiation Hardness

CMS spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3 x 10^{14} n_{eq}/cm²

Damage induced by protons is an order of magnitude larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

Aug 1, 2021

LuAG:Ce Ceramics Radiation Hardness

LuAG:Ce ceramics show a factor of two better radiation hardness than LYSO crystals up to 6.7×10^{15} n_{eq}/cm² and 1.2×10^{15} p/cm², promising for FCC-hh Paper N18-05 in the virtual IEEE NSS/MIC 2020 Conference Record (2020)

R&D on slow suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

Aug 1, 2021

RADICAL: LYSO/LUAG Shashlik ECAL

Excitation of LuAG:Ce ceramics matches well LYSO:Ce emission:

RADiCAL RADiation hard innovative CALorimetry R. Ruchti, in the CPAD 2021 workshop [1]

Reflaxicon CO₂ Laser $\lambda = 10.6 \, \mu m$ Fied Rod Molten Zone Laser Beam Fibre W_g R_r Molten Zone R_g R_g R_r R_r

Laser Heated Pedestal Growth

Aug 1, 2021

Mu2e Calorimeter Requirements

Mu2e-I: 1,348 CsI of 34 x 34 x 200 mm³

CsI+SiPM

•	Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV
•	Time resolution	σ < 500 ps
•	Position resolution	σ < 10 mm
•	Radiation hardness Crystals Photosensors 	1 kGy/yr and a total of $10^{12} n_1$ MeV equivalent/cm ² total 3 x $10^{11} n_1$ MeV equivalent/cm ² total

D. Hitlin, in the CPAD 2021 workshop [1]

2.5 x 2.5 x 25 cm³

Mu2e-II: 1,940 BaF₂:Y

Mu2e-II: arXiv:1802.02599

PIP-II/Mu2e-II: higher rates (~x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

Ultrafast and Radiation Hard BaF₂

NIMA 340 (1994) 442-457

BaF₂ has an ultrafast scintillation component @ 220 nm with **0.5 ns** decay time and a much larger slow component @ 300 nm with 600 ns decay time.

Slow suppression may be achieved by rare-earth-doping, and/or solar-blind photo-detectors

BaF₂ shows saturated damage from 10 krad to 100 Mrad, indicating limited defect density

This is confirmed by proton irradiation up to 9.7×10^{14} p/cm², and neutron irradiation up to 8.3×10^{15} n_{eo}/cm²

Aug 1, 2021

Aug 1, 2021

BaF₂:Y for Ultrafast Calorimetry

Suppressed slow and increased F/S in BaF₂:Y crystals: Proc. SPIE 10392 (2017)

295

Time (ns)

300

X-ray bunches of 2.83 ns spacing in septuplet clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

Invited Talk Presented by Ren-Yuan Zhu in the 2021 SPIE Optics + Photonics Conference at San Diego, California, USA

400

380

0 275

Solar-Blind Photodetectors

Gamma-ray induced readout noise (RIN:y) of less than 1 MeV observed in BaF₂:Y crystals with solar-blind photodetector under a dose rates of 23 rad/h

$$\frac{\sqrt{Q}}{LO}$$
 (MeV)

QE/PDE of four VUV photodetectors for BaF2 and BaF2:Y Paper N05-03 in the virtual IEEE NSS/MIC 2020 Conference Record (2020)

Aug 1, 2021

Calvision: A Dual Readout Crystal ECAL

Excellent EM and jet resolutions with IDEA DR HCAL for Higgs Factory

The HHCAL Concept

A jet energy resolution at a level of 20%/√E by HHCAL with dual readout: Either scintillation and Cerenkov light or light in short and long gate. See A. Para, H. Wenzel, and S. McGill in Callor2012 Proceedings A. Benaglia *et al.*, IEEE TNS **63** (2016) 574-579; M. Demarteau, in 2021 CPAD Workshop [1]

Aug 1, 2021

Low-Cost Inorganic Scintillators

Scintillating glasses will be investigated after crystals

	BGO	BSO	PWO	PbF ₂	PbFCl	Sapphire:Ti	AFO Glass	DSB:Ce Glass ¹	DSB:Ce,Gd Glass ^{2,3}	HFG Glass⁴
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	3.8	4.7 - 5.4	5.95
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁵	1420 ⁶	1420 ⁶	570
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	3.36	2.14	1.74
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.89	3.52	2.56	2.45
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	32.8	24.2	23.2
Z _{eff} value	72.9	75.3	74.5	77.4	75.8	11.2	42.8	44.4	48.7	56.9
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	5.56	7.68	8.24
Emission Peak ^a (nm)	480	470	425 420	١	420	300 750	365	440 460	440 460	325
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	١	١	١	1.50
LY (ph/MeV)⁰	7,500	1,500	130	۸	150	7,900	450	3,150	2,500	150
Decay Time ^a (ns)	300	100	30 10	١	3	300 3200	40	180 30	120, 400 50	25 8
d(LY)/dT (%/°C)°	-0.9	?	-2.5	۱.	?	?	?	-0.04	-0.04	-0.37
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6?	?	2.0	2.0?	?

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. At room temperature (20°C).

- 1. E. Auffray, et al., J. Phys. Conf. Ser. 587, 2015
- 2. R. W. Novotny, et al., J. Phys. Conf. Ser. 928, 2017
- 3. V. Dormenev , et al., the ATTRACT Final Conference

4. E. Auffray, et al., NIMA 380 (1996), 524-536

5. R. A. McCauley et al., Trans. Br. Ceram. Soc., 67. 1968

6. I. G. Oehlschlegel, Glastech. Ber. 44, 1971

Low density crystals/glasses

Aug 1, 2021

Cost-Effective Sapphire Crystals for HHCAL

Large sapphire crystal of 400-450 kg Prof. Xu Jun of Tongji University: Sapphire crystals by Kyropoulos (KY) technology A producer can grow 1,000 tons ingots annually with 400 to 450 kg/ingot Cost of mass-produced Sapphire crystals including processing: less than \$1/cc

	Weight (kg)	Size (cm)	Unit Price	Comment
ingot boule	400	Ф50×55	US\$12000/pc	for undoped
cutting/polishing	4	1×1×1	~US\$0.6/cc	for undoped

A weak emission at 325 nm with 150 ns decay time A strong emission at 755 nm with 3 μ s decay time

ID	Dimension (mm³)	#	Polishing	
Tongji Al ₂ O ₃ :Ti-1,2	10×10×4	2	Two faces	
Tongji Al ₂ O ₃ :C-1,2	Φ7×1	2	Two faces	
Tongji Lu ₂ O ₃ :Yb	6.4×4.8×0.4	1	Two faces	
Tongji LuScO ₃ :Yb	Φ4.8×1.3	1	Two faces	

Aug 1, 2021

Summary

HEP at the energy frontier require fast and radiation hard calorimetry. The **RADiCAL** concept utilizes bright and fast LYSO:Ce crystals and LuAG:Ce WLS for an ultra-compact, ultra-radiation hard and longitudinally segmented shashlik calorimeter for HL-LHC and FCC-hh.

HEP at the intensity frontier requires **ultrafast calorimetry**. R&D is on-going to develop large size BaF₂:Y crystals and solar-blind VUV photodetectors for Mu2e-II.

The proposed lepton Higgs factory requires good EM and jet resolutions. The dual readout **Calvision** crystal ECAL followed by the IDEA HCAL provides an excellent option.

Because of total absorption for hadrons the HHCAL concept promises the best jet mass resolution. Crucial R&D is to develop cost-effective inorganic scintillators of large volume.

Novel inorganic scintillators are needed for all these calorimeter concepts

Acknowledgements: DOE HEP Award DE-SC0011925

