

Inorganic Scintillators for Future Crystal Calorimeters

Ren-Yuan Zhu

California Institute of Technology

March 16, 2021

Presentation in the EIC Calorimetry Workshop

Why Crystal Calorimetry?

- Precision photons and electrons measurements enhance physics discovery potential in HEP experiments.
- Performance of crystal calorimeters is well understood for e/ γ , and is promising for jets measurements :
 - The best possible energy resolution and position resolution;
 - Good e/ γ identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout, either C/S and F/S gate.
- The next generation crystal calorimeters for HEP:
 - Ultra-compact, rad-hard LYSO/LuAG ceramics RADiCAL for HL-LHC/FCC-hh;
 - Ultrafast BaF₂:Y calorimetry to face the challenge of unprecedented rate;
 - Longitudinally segmented crystal calorimeter for the Higgs factory:

Calvision and homogeneous hadron calorimeter (HHCAL).

Existing Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-Now	10-Now
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS	BES III
Accelerator	SPEAR	LEP	CESR	LEAR	Tevatron	PEP	KEKB	LHC	BEPC
Laboratory	SLAC	CERN	Cornell	CERN	FNAL	SLAC	KEK	CERN	IHEP
Crystal Type	Nal:TI	BGO	Csl:Tl	CsI:TI	Csl	CsI:TI	Csl:Tl	PWO	Csl:Tl
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0	1.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29	0.94
Crystal number	672	11,400	7,800	1,400	3,300	6,580	8,800	75,848	6,240
Crystal Depth (X_0)	16	22	16	16	27	16 to 17.5	16.2	25	15
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11	5.3
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2	5,000
Photo-detector	РМТ	Si PD	Si PD	WS+Si PD	РМТ	Si PD	Si PD	Si APD	Si PD
Gain of Photo-detector	Large	1	1	1	4,000	1	1	50	1
σ _N /Channel(MeV)	0.05	0.8	0.5	0.2	Small	0.15	0.2	40	0.2
Dynamic Range	10 ⁴	10 ⁵	10 ⁴	10 ⁵	10 ⁴				

Crystals with Mass Production Capability

Crystal	Nal:Tl	CsI:Tl	Csl	BaF ₂	CeF ₃	PbF ₂	BGO	BSO	PbWO ₄	LYSO:Ce	AFO Glasses	Sapphire:Ti
Density (g/cm ³)	3.67	4.51	4.51	4.89	6.16	7.77	7.13	6.8	8.3	7.40	4.6	3.98
Melting points (°C)	651	621	621	1280	1460	824	1050	1030	1123	2050	-	2040
X ₀ (cm)	2.59	1.86	1.86	2.03	1.65	0.94	1.12	1.15	0.89	1.14	2.96	7.02
R _M (cm)	4.13	3.57	3.57	3.10	2.39	2.18	2.23	2.33	2.00	2.07	2.89	2.88
λ _ι (cm)	42.9	39.3	39.3	30.7	23.2	22.4	22.7	23.4	20.7	20.9	26.4	24.2
Z _{eff}	50.1	54.0	54.0	51.6	51.7	77.4	72.9	75.3	74.5	64.8	42.8	11.2
dE/dX (MeV/cm)	4.79	5.56	5.56	6.52	8.40	9.42	8.99	8.59	10.1	9.55	6.84	6.75
λ _{peak} ^a (nm)	410	560	420 310	300 220	340 300	١	480	470	425 420	420	365	300 750
Refractive Index ^b	1.85	1.79	1.95	1.50	1.62	1.82	2.15	2.68	2.20	1.82	-	1.76
Normalized Light Yield ^{a,c}	120	190	4.2 1.3	42 4.8	8.6	١	25	5	0.4 0.1	100	1.5	0.04 0.22
Total Light yield (ph/MeV)	35,000	58,000	1700	13,000	2,600	λ	7,400	1,500	130	30,000	450	7,900
Decay time ^a (ns)	245	1220	30 6	600 0.5	30	١	300	100	30 10	40	40	300 3200
Hygroscopic	Yes	Slight	Slight	No	No	No	No	No	No	No	No	No
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV Mu2e	TAPS Mu2e-II?	-	A4 g-2	L3 BELLE	-	CMS ALICE PrimEx Panda	CMS BTL COMET HERD	HHCAL?	HHCAL?

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

Issue of PWO: <u>Radiation Damage</u>

Excellent energy resolution by PWO+APD for Higgs discovery The main issue of CMS ECAL: radiation damage in PWO crystals Continuous monitoring are crucial to maintaining crystal precision

Dose Rate Dependent Damage in PWO

Talk in CMS ECAL Days (2016)

PWO light reached an equilibrium under a dose rate, showing a dose rate dependent damage. Monitoring data support damage by $\gamma/p/n$.

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- *D_i*: color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

March 16, 2021

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

Oxygen Vacancies Identified by TEM/EDS

NIM A413 (1998) 297

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	$Point_1$	Point ₂	$Point_3$	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

5 to10 nm black spots identified by TOPCON-002B TEM scope, 200 kV, 10 uA.

Localized stoichiometry analysis by JEOL JEM-2010 scope and Link ISIS EDS

2019 DOE Basic Research Needs Study on Instrumentation: Calorimetry

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Energy, spatial and timing resolution, radiation hard and ultrafast calorimetry Calorimetry session in 2021 CPAD HEP Instrumentation Frontier Workshop https://indico.fnal.gov/event/46746/timetable/#all.detailed

PHANE CHUNCHOUSE

Fast and Ultrafast Inorganic Scintillators

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94 ^[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X _o (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35 ^e 48 ^e	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <mark>0.5</mark>	600 0.5	<1	1.5	4	148 <mark>6</mark>	40	820 50	191 25	800 80	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

PULIFORNIA BIBILITIAN COTONHTILITIAN

The CMS MIP Timing Detector

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹

Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR Endcap Timing Layer: LGAD sensors readout by ETROC

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

CMS MTD: Expected Radiation

CMS MTD/FCAL: 4.8/68 Mrad, 2.5x10¹³/2.1x10¹⁴ p/cm² & 3.2x10¹⁴/2.4x10¹⁵ n_{eq}/cm²

CMS MTD	η	n _{eq} (cm ⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Protons (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.48E+14	2.75E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.70E+14	3.00E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.85E+14	3.17E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.50E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.00E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.25E+07	9.9E+13	1.1E+06	25.5	1020
Endcap	3.00	2.4E+15	2.67E+07	2.1E+14	2.3E+06	67.5	2700

Much higher at FCC-hh: up to 0.1/500 Grad and 3x10¹⁶/5x10¹⁸ n_{eq}/cm² at EMEC/EMF M. Aleksa *et al.,* Calorimeters for the FCC-hh CERN-FCCPHYS-2019-0003, Dec 23, 2019

LYSO Radiation Hardness

CMS LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eq}/cm²

Damage induced by protons is an order of magnitude larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

Radiation Hard LuAG:Ce Ceramics

LuAG:Ce ceramics shows a factor of two better radiation hardness than LYSO crystals up to $6.7 \times 10^{15} n_{eq}/cm^2$ and $1.2 \times 10^{15} p/cm^2$, promising for FCC-hh Paper N18-05 in the virtual IEEE NSS/MIC 2020 Conference Record (2020)

R&D on slow component suppression by e.g. Ca co-doping, and radiation hardness by $\gamma/p/n$

RADiCAL: LYSO/LuAG Shashlik CAL

Mu2e Calorimeter Requirements

Ultrafast and Slow Light from BaF₂

BaF₂ has a ultrafast scintillation component @ 220 nm with 0.5 ns decay time and an intensity similar to undoped Csl. It has also a factor of 5 larger slow component @ 300 nm with 300 ns decay time.

Slow suppression may be achieved by rare earth (Y, La and Ce) doping, and/or solarblind photo-detectors, e.g. Cs-Te, K-Cs-Te and Rb-Te cathode

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

y-Ray Induced Damage in BaF,

March 16, 2021

17

BaF₂:Y for Ultrafast Calorimetry

Increased F/T ratio observed in BGRI BaF₂:Y crystals, Proc. SPIE 10392 (2017)

March 16, 2021

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

Long BaF₂:Y Crystals for Mu2e-II

Sample ID	Dimension (mm ³)
BGRI BaF ₂ :Y-2020	25×25×201
SIC BaF ₂ :Y-2020	25×25×197
SIC BaF ₂ :Y-2017	32×32×182
SIC BaF ₂ -2	30×30×250
SIC BaF ₂ -8	30×30×250

Gamma-ray Induced Readout Noise RIN:y

BaF₂ crystals, wrapped by Tyvek paper and coupled to the R2059 PMT via an air gap, were irradiated by ⁶⁰Co γ-rays under dose rates of 2 and 23 rad/h

F is defined as the radiation induced photoelectron numbers per second, normalized to the dose rate.
RIN (σ) is defined as the fluctuation of photoelectron number (Q) in the readout gate normalized to the light output (LO) of BaF₂

 $F = \frac{\frac{Photocurrent}{Charge_{electron} \times Gain_{SiPM}}}{Dose \ rate_{\gamma-ray} \ or \ Flux_{neutron}}$

 $Q = F \times Dose Rate \times Gate Length$

$$\sigma = \frac{\sqrt{Q}}{LO}$$
 (MeV)

QE/PDE of four VUV Photodetectors

QE/PDE of four VUV photodetectors for BaF₂ and BaF₂:Y

Paper N05-03 in the virtual IEEE NSS/MIC 2020 Conference Record (2020)

Dhotodotoctor	EWQE/PDE _{fast}	EWQE/PDE _{slow}	EWQE/PDE _{BaF}	EWQE/PDE _{BaF:Y}	Relative	Relative	Relative
Photodelector	(%)	(%)	(%)	(%)	LO (50 ns)	F _{BaF}	F _{BaF:Y}
Hamamatsu R2059	15.2	20.9	20.0	18.7	1.00	1.00	1.00
Photek Solar-Blind	25.6	10.6	13.0	16.1	1.68	0.65	0.86
FBK SiPM w/UV Filter-I	17.8	12.7	13.5	14.7	1.17	0.68	0.79
Hamamatsu MPPC	10.5	9.8	9.9	10.2	0.69	0.50	0.55

RIN:y for four VUV Photodetectors

Photodetector	EWQE/PDE _{fast} (%)	EWQE/PDE (%)	LO(50 ns) p.e./MeV	F	RIN:y (keV)					
BGRI BaF ₂ :Y-2020										
Hamamatsu R2059 PMT	15.2	18.7	53	3.1×10 ⁹	1050					
Photek PMT Solar Blind	25.6	16.1	89	2.7×10^{9}	580					
FBK SiPM w/UV Filter-I	17.8	14.7	62	2.4×10^{9}	800					
Hamamatsu VUV MPPC	10.5	10.2	37	1.7×10^{9}	1120					
	SIC BaF ₂ :	Y-2020								
Hamamatsu R2059 PMT	15.2	18.7	45	1.3×10 ⁹	810					
Photek PMT Solar Blind	25.6	16.1	76	1.1×10 ⁹	450					
FBK SiPM w/UV Filter-I	17.8	14.7	53	1.0×10^{9}	610					
Hamamatsu VUV MPPC	10.5	10.2	31	7.1×10^{8}	870					
	BGRI BaF	2-1507								
Hamamatsu R2059 PMT	15.2	20.0	46	5.8×10 ⁹	1650					
Photek PMT Solar Blind	25.6	13.0	77	3.8×10 ⁹	790					
FBK SiPM w/UV Filter-I	17.8	13.5	54	3.9×10 ⁹	1160					
Hamamatsu VUV MPPC	10.5	9.9	32	2.9×10^{9}	1680					
	SIC BaF ₂ -2									
Hamamatsu R2059 PMT	15.2	20.0	48	5.8×10 ⁹	1590					
Photek PMT Solar Blind	25.6	13.0	81	3.8×10 ⁹	760					
FBK SiPM w/UV Filter-I	17.8	13.5	56	3.9×10 ⁹	1120					
Hamamatsu VUV MPPC	10.5	9.9	33	2.9×10^{9}	1620					

RIN: y is dominated by the slow light, so is reduced by yttrium doping Solar blind photo-detector reduces RIN: y to less than 0.6 MeV

1 Mrad Damage in Long BaF₂:Y

SIC 2017 BaF₂:Y sample approaches performance of BaF₂ crystals Recovery is very small for the fast scintillation component

Diverse crystal quality at this stage. R&D needed for improvement

Calvision: Longitudinally Segmented Crystal CAL

Aiming at excellent EM and jet resolutions for Higgs Factory

The HHCAL Concept

energy, 100 GeV

A. Para, H. Wenzel, and S. McGill in Callor2012 Proceedings and
A. Benaglia *et al.*, IEEE TNS **63** (2016)
574-579: a jet energy resolution at a level of 20%/√E by HHCAL with dual readout of S/C or dual gate.
M. Demarteau, 2021 CPAD Workshop

 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <td

300

250

200

100 E

1000

800

800

400

200

100 cm

Inorganic Scintillators for HHCAL

	BGO	BSO	PWO	PbF ₂	PbFCl	Sapphire:Ti	AFO Glass	BaO·2SiO ₂ Glass ¹	HFG Glass ²
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	3.8	5.95
Melting point (°C)	1050	1030	1123	824	608	2040	980 ³	1420 ⁴	570
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	3.36	1.74
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.89	3.52	2.45
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	32.8	23.2
Z _{eff} value	72.9	75.3	74.5	77.4	75.8	11.2	42.8	44.4	56.9
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	5.56	8.24
Emission Peak ^a (nm)	480	470	425 420	λ	420	300 750	365	425	325
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	\	\	1.50
Relative Light Output by PMT ^{a,c}	100	20	1.6 0.4	λ	2.0	0.2 0.9	2.6	5.0 4.0	3.3 6.1
LY (ph/MeV) ^d	35,000	1,500	130	λ	150	7,900	450	3,150	150
Decay Time ^a (ns)	300	100	30 10	λ	3	300 3200	40	180 30	25 8
d(LY)/dT (%/°C) ^d	-0.9	?	-2.5	۸.	?	?	?	-0.04	-0.37
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	?	?	?

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of BGO

March 18; 202 At room temperature (20°C) with PMT QE taken out.

Low density crystals/glasses

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

Cost of Mass Produced Crystals (Mar 2019)

Cost effectiveness scaled to X₀: PWO, BGO, CsI, BSO, BaF₂:Y, LYSO

ltem	Size (R _M xR _M x25 X ₀)	1 m ³	10 m ³	100 m ³	Scaled to X ₀
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09

Summary

- The HL-LHC and FCC-hh requires fast and rad hard calorimetry. The RADiCAL concept uses radiation hard LuAG:Ce ceramics as WLS for LYSO:Ce crystals for an ultra-compact, fast and longitudinally segmented shashlik calorimeter. R&D is needed for LuAG:Ce WLS.
- □ Undoped BaF₂ crystals provide ultrafast light with sub-ns decay time and a good radiation hardness up to 100 Mrad. Yttrium doping suppresses its slow light and promises a **ultrafast calorimeter**. R&D is needed for optimizing yttrium doping and radiation hardness in large size BaF₂:Y crystals for Mu2e-II. Solar-blind VUV photo-detectors are also needed for controlling the radiation induced readout noise.
- □ The longitudinally segmented Calvision crystal ECAL with dual readout combined with a Dream HCAL promises excellent EM and HAD resolutions for the Higgs factory.
- Homogeneous HCAL (HHCAL) promises the best jet mass resolution by total absorption with a challenge in cost. R&D is needed for cost-effective mass produced inorganic scintillators.

Acknowledgements: DOE HEP Award DE-SC0011925

Cost-Effective Sapphire Crystals for HHCAL

Prof. Xu Jun of Tongji University: Sapphire crystals by Kyropoulos (KY) technology A producer can grow 1,000 tons ingots annually with 400 to 450 kg/ingot Cost of mass-produced Sapphire crystals including processing: less than \$1/cc

Sapphire Crystal	Weight (g)	Size (cm)	Unit Price	Comment
Ingot Boule	400,000	Ф50×55	US\$12,000/pc	Undoped
Cutting/Polishing	4	1×1×1	~US\$0.6/cc	Undoped

Presentation by Ren-Yuan Zhu in the EIC Calorimetry Workshop

Sapphire: Ti Emission and Transmittance

S6654-1010 EWQE

Fast/slow component: 0.3k/6.4k and 1.3k/6.6k photons/MeV Total: 6.7k and 7.9k photons/MeV, compatible with BGO

R2059 EWQE

PHS: Al_2O_3 :Ti-1/2

