

Latest Development in Inorganic Scintillators and Readout for Future Crystal Calorimeters

Ren-Yuan Zhu

California Institute of Technology

July 22, 2020

Presentation in the Online Mini-Workshop on a Crystal ECAL

Why Crystal Calorimetry?

- Precision photons and electrons measurements enhance physics discovery potential in HEP experiments.
- Performance of crystal calorimeter is well understood for e/γ , and is investigated for jets measurements :
 - The best possible energy resolution and position resolution;
 - Good e/ γ identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout, either C/S and F/S gate.
- Novel Inorganic Scintillators for Future HEP experiments:
 - Bright, fast and rad-hard for HL-LHC and FCC-hh: LYSO and LuAG ceramics;
 - Ultrafast for high rate, e.g. Mu2e-II, and ultrafast timing: BaF₂:Y;
 - Cost-effective crystals for homogeneous hadron calorimetry: Sapphire:Ti.

Existing Crystal Calorimeters in HEP

Date	75-85	80-08	80-00	80-00	90-10	94-10	94-10	95-Now	10-Now
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS	BES III
Accelerator	SPEAR	LEP	CESR	LEAR	Tevatron	PEP	KEKB	LHC	BEPC
Laboratory	SLAC	CERN	Cornell	CERN	FNAL	SLAC	KEK	CERN	IHEP
Crystal Type	Nal:Tl	BGO	CsI:TI	CsI:TI	Csl	CsI:TI	CsI:TI	PWO	CsI:TI
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0	1.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29	0.94
Crystal number	672	11,400	7,800	1,400	3,300	6,580	8,800	75,848	6,240
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25	15
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11	5.3
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2	5,000
Photo-detector	РМТ	Si PD	Si PD	WS+Si PD	РМТ	Si PD	Si PD	Si APD	Si PD
Gain of Photo-detector	Large	1	1	1	4,000	1	1	50	1
σ _N /Channel(MeV)	0.05	0.8	0.5	0.2	Small	0.15	0.2	40	0.2
Dynamic Range	10 ⁴	10 ⁵	10 ⁴	10 ⁵	10 ⁴				

Crystals with Mass Production Capability

Crystal	Nal:Tl	CsI:Tl	Csl	BaF ₂	CeF ₃	PbF ₂	BGO	BSO	PbWO ₄	LYSO:Ce	AFO Glasses	Sapphire:Ti
Density (g/cm ³)	3.67	4.51	4.51	4.89	6.16	7.77	7.13	6.8	8.3	7.40	4.6	3.98
Melting points (°C)	651	621	621	1280	1460	824	1050	1030	1123	2050	-	2040
X ₀ (cm)	2.59	1.86	1.86	2.03	1.65	0.94	1.12	1.15	0.89	1.14	2.96	7.02
R _M (cm)	4.13	3.57	3.57	3.10	2.39	2.18	2.23	2.33	2.00	2.07	2.89	2.88
λ _ι (cm)	42.9	39.3	39.3	30.7	23.2	22.4	22.7	23.4	20.7	20.9	26.4	24.2
Z _{eff}	50.1	54.0	54.0	51.6	51.7	77.4	72.9	75.3	74.5	64.8	42.8	11.2
dE/dX (MeV/cm)	4.79	5.56	5.56	6.52	8.40	9.42	8.99	8.59	10.1	9.55	6.84	6.75
λ _{peak} ^a (nm)	410	560	420 310	300 220	340 300	١	480	470	425 420	420	365	300 750
Refractive Index ^b	1.85	1.79	1.95	1.50	1.62	1.82	2.15	2.68	2.20	1.82	-	1.76
Normalized Light Yield ^{a,c}	120	190	4.2 1.3	42 4.8	8.6	١	25	5	0.4 0.1	100	1.5	0.04 0.22
Total Light yield (ph/MeV)	35,000	58,000	1700	13,000	2,600	λ	7,400	1,500	130	30,000	450	7,900
Decay time ^a (ns)	245	1220	30 6	600 0.5	30	١	300	100	30 10	40	40	300 3200
Hygroscopic	Yes	Slight	Slight	No	No	No	No	No	No	No	No	No
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV Mu2e	TAPS	-	A4 g-2	L3 BELLE	-	CMS ALICE PrimEx Panda	CMS BTL COMET HERD	-	HHCAL?

Instrumentation: Calorimetry

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

Energy, spatial and timing resolution, and radiation hard and ultrafast media

ALICHNORO

Fast and Ultrafast Inorganic Scintillators

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94 ^[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35 ^e 48 ^e	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000°	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <mark>0.5</mark>	600 0.5	<1	1.5	4	148 6	40	820 50	191 25	800 80	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

Applications in HEP Experiments

CMS MTD: Expected Radiation

CMS MTD/FCAL: 4.8/68 Mrad, 2.5x10¹³/2.1x10¹⁴ p/cm² & 3.2x10¹⁴/2.4x10¹⁵ n_{eq}/cm²

CMS MTD	η	n _{eq} (cm⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Protons (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.48E+14	2.75E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.70E+14	3.00E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.85E+14	3.17E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.50E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.00E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.25E+07	9.9E+13	1.1E+06	25.5	1020
Endcap	3.00	2.4E+15	2.67E+07	2.1E+14	2.3E+06	67.5	2700

More than three orders of magnitude at FCC-hh: **500 Grad and 5 x 10¹⁸ n_{eg}/cm²**

Particle Spectra at HL-LHC

FLUKA simulations: neutrons and charged hadrons peaked at MeV and several hundreds MeV, respectively. Neutron and proton induced damages were investigated at the East Port and the Blue Room of the Los Alamos Neutron Science Center (LANSCE), respectively

Hadron Irradiation at LANSCE

Irradiation by 800 MeV protons in three experiments 6501, 6990 and 7324 up to 3 x 10¹⁵ p/cm² was carried out at the target 2 in the blue room of LANSCE, where crystals and shashlik calorimeter towers were measured *in situ* by a home-made spectrophotometer.

Samples are located at East Port in the Target-4, about 1.2 m away from the neutron production target

Irradiation by neutrons in three experiments 6991, 7332 and 7638 up to 3 x 10¹⁵ n_{eq}/cm² at the target 4 in the East Port of LANSCE with 1 MeV equivalent neutron flux calculated by using MCNPX (Monte Carlo N-Particle eXtended) package tallied in the largest sample volume (averaging).

LYSO Radiation Hardness

CMS BTL spec: < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eq}/cm²

Damage induced by protons is an order of magnitude larger than that from neutrons Presumably due to ionization energy loss in addition to displacement and nuclear breakup

Radiation Induced Readout Noise

Radiation induced readout noise (~30 keV) was determined by measuring the radiation induced photo-current in LYSO+SiPM under the expected dose rate and neutron fluence

LuAG:Ce Ceramic Samples

Radiation Hard LuAG:Ce Ceramics

Rad-hard up to 3×10^{14} p/cm² and 220 Mrad: promising for FCC-hh

R&D on slow component suppression by Pr doping or co-doping

Ultrafast and Slow Light from BaF₂

2 0 20 0 10 20

 BaF_2 has a ultrafast scintillation component @ 220 nm with 0.5 ns decay time and an intensity a little less than undoped Csl. It has also a factor of 5 larger slow component @ 300 nm with 300 ns decay time.

Slow suppression may be achieved by selective rare earth doping, e.g. Y, La and Ce, in BaF₂, and/or photodetectors with filters or a solar- blind cathode, e.g. Cs-Te, K-Cs-Te and Rb-Te.

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

Transmittance of BaF₂:La and BaF₂:La/Ce

Absorptions observed in La and La/Ce doped BaF₂:IEEE TNS 66 (2019) 506-518

Yttrium Doped Small BaF₂ Samples

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

THE STITUTE OF HE CHNOLOGI

APS Beam Test: BaF₂:Y, BaF₂, ZnO:Ga & LYSO

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals: NIMA 240 (2019) 223-239

Amplitude reduction in BaF₂ and LYSO due to space charge in PMT from slow scintillation, but not in BaF₂:Y

SIC BaF₂:Y-2017

SIC BaF₂:Y-2017 32 x 32 x 182 mm³

F: 150 p.e./MeV, F/S: 1.5 F/T LRU: 10%/6%, δ_F :-1.2%/X₀

SIC BaF₂:Y-2019

July 22, 2020

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

SIC BaF₂:Y-2020

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

SIC BaF₂:Y-2020: Transverse T

A variation of slow emission intensity and more scattering centers starting from 15 cm from the seed

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

Summary: SIC BaF₂:Y Long Crystals

Dimension	EWLT	EWLT	Coupling	²² Na/α	Basic Scinti source @ 1/8	Light Response Uniformity						
	(mm ³)	(%)	(%)	end	50 ns LO (p.e./MeV)	2500 ns LO (p.e./MeV)	LO(50) /LO(2500)	F	F/S	50 ns LO	2500 ns LO	LO(50)/ LO(2500)
SIC	22.22.402	70.4	70.7	Α	162	253	0.64	157	1.7	138 (10.0%)	230 (5.6%)	0.59 (4.5%)
ваг ₂ : 1- 2017	- 32×32×182 /2	12.1	2.1 79.7	В	158	254	0.62	148	1.4	116 (19.1%)	200 (16.4%)	0.57 (3.7%)
SIC	2020140	70 0	.0 85.8	Α	132	181	0.73	125	2.3	108 (12.8%)	162 (5.7%)	0.66 (7.6%)
2019	30×30×140	78.0		В	152	227	0.67	141	1.6	117 (15.6%)	177 (14.9%)	0.66 (1.5%)
SIC	SIC BaF ₂ :Y- 25×25×197 2020	61.1	72.2	Seed	115	183	0.63	110	1.6	88 (17.7%)	136 (20.5%)	0.64 (2.8%)
2020				Tail	100	141	0.71	98	2.4	83 (10.1%)	128 (5.3%)	0.64 (7.7%)

BGRI BaF₂:Y-2017

BGRI BaF₂:Y-2020

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

BGRI BaF₂:Y-2020: Transverse T

A variation of slow emission intensity and good optical quality along the crystal length

Summary: BGRI BaF₂:Y Long Crystals

Di	Dimension	EWLT Fast	EWLT Slow (%)	Coupling end	So	Basic Scinti urce @ 1/8 len	Light Response Uniformity					
	(mm ³)	(%)			50 ns LO (p.e./MeV)	2500 ns LO (p.e./MeV)	LO(50) /LO(2500)	F	F/S	50 ns LO	2500 ns LO	LO(50)/ LO(2500)
BGRI BoE IV	2525100	<u> </u>	77.4	А	155	231	0.67	152	1.9	129 (11.5%)	206 (6.8%)	0.62 (4.8%)
2017	· 25×25×100 6	09.4	77.1	В	160	258	0.62	157	1.5	129 (15.4%)	214 (13.7%)	0.60 (2.1%)
BGRI BoE IV	2525200		1.1 45.2	Α	133	317	0.42	203*	NA	83 (30.6%)	229 (20.4%)	0.35 (9.4%)
2018	25×25×200	11.1		В	133	265	0.52	159*	NA	89 (26.4%)	228 (8.7%)	0.38 (17.2%)
BGRI BoE IV	2525204	61.1	72.2	А	135	268	0.50	124	0.9	105 (14.5%)	228 (8.5%)	0.45 (5.8%)
2020	BaF ₂ :Y- 25×25×201 2020			В	138	270	0.51	126	0.9	106 (17.1%)	221 (14.7%)	0.47 (3.1%)

*Only one component with 30~50 ns decay time is observed, but no ultrafast component

y-Ray Induced Damage in BaF₂

July 22, 2020

Presentation by Ren-Yuan Zhu in the Online Mini-Workshop on a Crystal ECAL

Hadron Induced Damage in BaF₂

PTESEILATION BY REIT-TUAL ZITU III THE OTHINE WITH-WORKSHOP OF A CLYSTAL ECAL

VUV PMT for BaF₂ and BaF₂:Y

Photo-detectors	EWQE _{fast} (%)	EWQE _{slow} (%)	BaF ₂ LO _{fast}	BaF ₂ LO _{slow}	BaF₂ F/S	BaF ₂ :Y LO _{fast}	BaF ₂ :Y LO _{slow}	BaF₂:Y F/S
Hamamatsu R2059	15.2	20.9	0.15	1.07	1/7.0	0.15	0.32	1/2.1
Photek solar blind PMT	25.6	10.6	0.26	0.54	1/2.1	0.25	0.15	1/0.6

VUV SiPM for BaF₂ and BaF₂:Y

Photo-detectors	EWQE _{fast} (%)	EWQE _{slow} (%)	BaF ₂ LO _{fast}	BaF ₂ LO _{slow}	BaF₂ F/S	BaF ₂ :Y LO _{fast}	BaF ₂ :Y LO _{slow}	BaF ₂ :Y F/S
Hamamatsu s1337x	21.7	18.2	0.22	0.93	1/4.3	0.22	0.28	1/1.3
FBK-I SiPM	11.7	6.3	0.12	0.32	1/2.8	0.12	0.097	1/0.8

Homogeneous HCAL Concept

10

A. Para, H. Wenzel, and S. McGill in Callor2012 Proceedings and A. Benaglia et al., IEEE TNS 63 (2016) 574-579: a jet energy resolution at a level of $20\%/\sqrt{E}$ by HHCAL with dual readout of S/C or dual gate

R.-Y. Zhu, ILCWS-8, Chicago: a HHCAL cell with pointing geometry

250

800

800

200 ٥

100 cm

Corrected energy, 100 GeV

5x5 cm 2

Corrected energy, 200 GeV

10x10 cm

Cost-Effective Sapphire Crystals for HHCAL

Prof. Xu Jun of Tongji University: Sapphire crystals by Kyropoulos (KY) technology A producer can grow 1,000 tons ingots annually with 400 to 450 kg/ingot Cost of mass-produced Sapphire crystals including processing: less than \$1/cc

Sapphire Crystal	Weight (g)	Size (cm)	Unit Price	Comment
Ingot Boule	400,000	Ф50×55	US\$12,000/pc	Undoped
Cutting/Polishing	4	1×1×1	~US\$0.6/cc	Undoped

Sapphire: Ti Emission and Transmittance

S6654-1010 EWQE

Fast/slow component: 0.3k/6.4k and 1.3k/6.6k photons/MeV Total: 6.7k and 7.9k photons/MeV, compatible with BGO

R2059 EWQE

PHS: Al_2O_3 :Ti-1/2

All Inorganic Cs Pb Halide Perovskite QD

Summary

- LYSO crystals are radiation hard for HL-LHC applications, such as CMS BTL. BaF₂ shows a radiation hardness similar to LYSO at high radiation level. LuAG:Ce ceramics appears promising for FCC-hh, provided that its slow component is eliminated.
- Undoped BaF₂ crystals provide ultrafast light with sub-ns decay time. Yttrium doping enhances its F/S ratio while maintaining its sub-ns fast component not changed. 20 cm long BaF₂:Y crystals with LO_F>100 p.e./MeV, F/S>2, 10% LRU and |δ_F|<3%/X₀ are developed. R&D continues to optimize yttrium doping in large size BaF₂:Y crystals for Mu2e-II. SB photo-detectors are also under development for BaF₂:Y readout.
- ❑ Mass-produced Sapphire crystals costs less than \$1/cc. Sapphire:Ti crystals show a weak/strong fast/slow scintillation at 325/755 nm with LO of 1.3k/6.6k photons/MeV and 151 ns/3 µs decay. With a cut-off of 280 nm and LO similar to BGO it may be used for an HHCAL with dual readout of both scintillation and Cerenkov light.
- Additional ultrafast scintillators under development, such as ZnO:Ga films, quantum confinement based all inorganic Cs Pb halide perovskite quantum dots etc.

Acknowledgements: DOE HEP Award DE-SC0011925

Diamond Photodetector

E. Monroy, F. Omnes and F. Calle,"Wide-bandgap semiconductor ultraviolet photodetectors,IOPscience 2003 Semicond. Sci. Technol. 18 R33

E. Pace and A. De Sio, "Innovative diamond photo-detectors for UV astrophysics", Mem. S.A.It. Suppl. Vol. 14, 84 (2010)

Figure 6. Quantum efficiency of diamond photoconductors at different temperatures and Arrhenius plot of the peak value (inset). (From [Sal00].)

Fig.4. External quantum efficiency extended to visible and near infrared wavelength regions. The