

Large Size Yttrium Doped BaF₂ Crystals for the Mu2e-II Experiment

Chen Hu¹, Liyuan Zhang¹, Ren-Yuan Zhu¹, Junfeng Chen², Dong Wang², Jianqiang Liu³, Mingrong Zhang³

¹California Institute of Technology

²Shanghai Institute of Ceramics

³Beijing Glass Research Institute

June 18, 2020

Introduction

- The Mu2e-I experiment is building a undoped CsI calorimeter, which has a fast scintillation at 310 nm with 30 ns decay time and survives an ionization dose up to 100 krad. A radiation level beyond 100 krad is expected by Mu2e-II, where CsI will be blackened.
- BaF₂ crystal is featured with a ultrafast scintillation at 220 nm with 0.5 ns decay time and an adequate radiation hardness. Its slow scintillation at 300 nm with 650 ns decay time, however, would cause pileup in a high rate environment.
- Two approaches are used to suppress the slow scintillation in BaF₂: selective RE doping and/or dedicated photodetector. Yttrium doping in BaF₂ crystals is found effective, promising a ultrafast calorimeter for Mu2e-II.
- Mass production capability of BaF₂ exists in industry:
 - BGRI (China), Incrom (Russia) and SICCAS (China);
 - Hellma (Germany).
- Recent progress in large size BaF₂:Y crystals for Mu2e-II is reported.

Some Fast Inorganic Scintillators

	LSO/LYSO	GSO	YSO	CsI	BaF ₂	CeF₃	CeBr ₃	LaCl₃	LaBr ₃	Plastic scintillator (BC 404) ^①
Density (g/cm³)	7.4	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70 [#]
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.7	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.1	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54	51.6	50.8	45.6	47.3	45.6	5.82
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.9	2.02
Emission Peak ^a (nm)	420	430	420	310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.8	1.95	1.5	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	3.6 1.1	42 4.1	8.6	99	15 49	153	35
Decay Time ^a (ns)	40	73	60	30	650 0.5	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.1	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html

The 0.5 ns scintillation in BaF₂ promises a ultrafast crystal calorimeter to face the challenge of high event rate expected by Mu2e-II

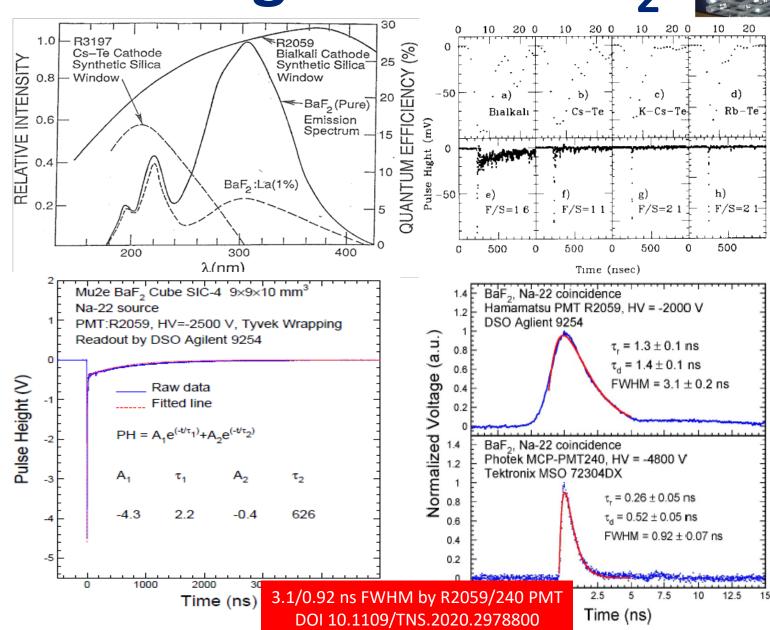
b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO

d. At room temperature (20°C)

^{#.} Softening point

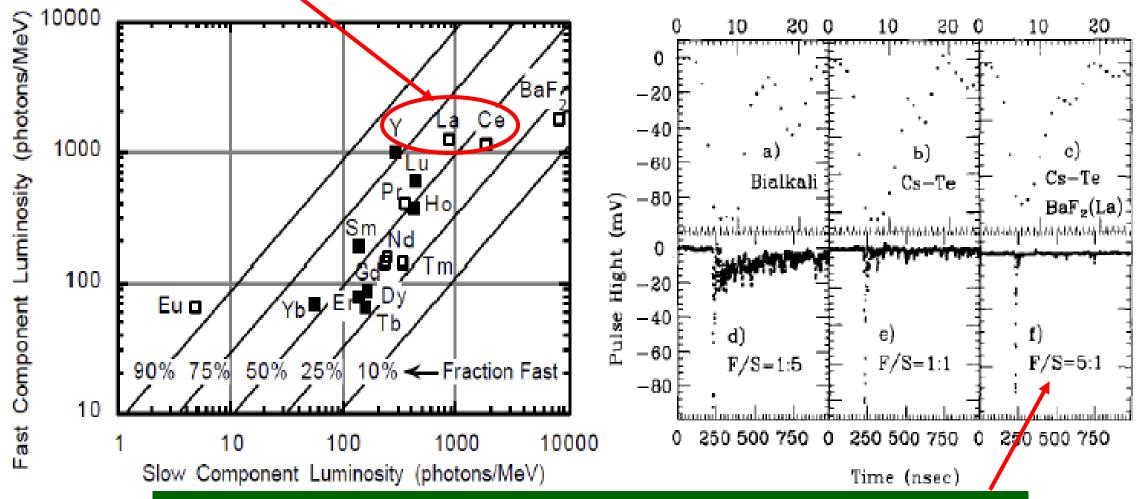
^{1.} http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx



Ultrafast and Slow Light from BaF₂

BaF₂ has a ultrafast scintillation component @ 220 nm with 0.5 ns decay time and an intensity a little less than undoped Csl. It has also a factor of 5 larger slow component @ 300 nm with 300 ns decay time.

Slow suppression may be achieved by selective rare earth doping, e.g. Y, La and Ce, in BaF₂, and/or photodetectors with filters or a solar- blind cathode, e.g. Cs-Te, K-Cs-Te and Rb-Te. NIMA 340 (1994) 442-457

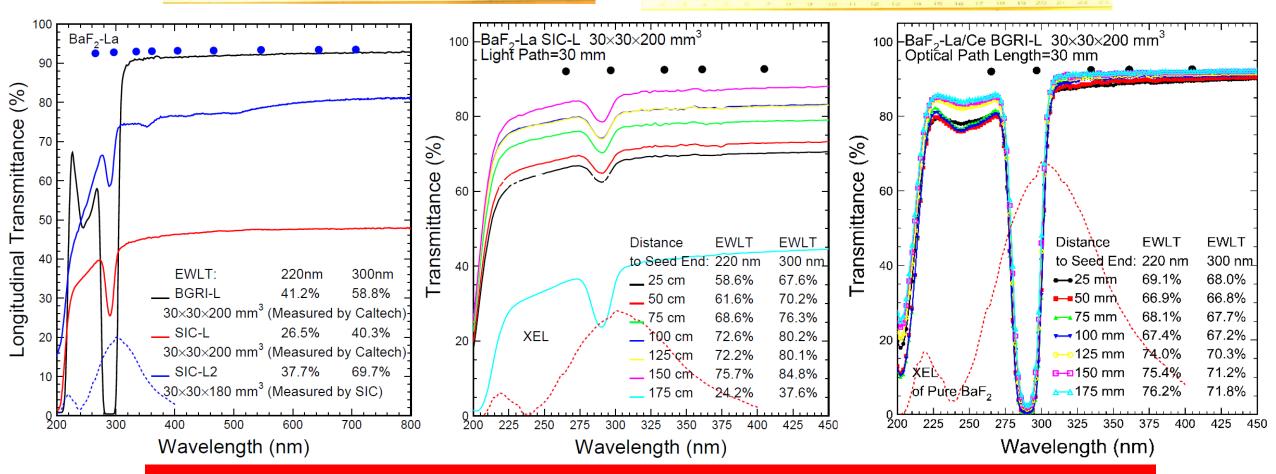


Slow Suppression: Doping & Readout

Slow suppression by RE doped BaF₂ powders: Y, La and Ce (1994)

B.P. SOBOLEV et al., "SNPPRESSION OF BaF2 SLOW COMPONENT OF X-RAY LUMINESCENCE IN NON-STOICHIOMETRIC Ba0.9R0.1F2 CRYSTALS (R=RARE EARTH N EMENT)," Proceedings of The Material Research Society: Scintillator and Phosphor Materials, pp. 277-283, 1994.

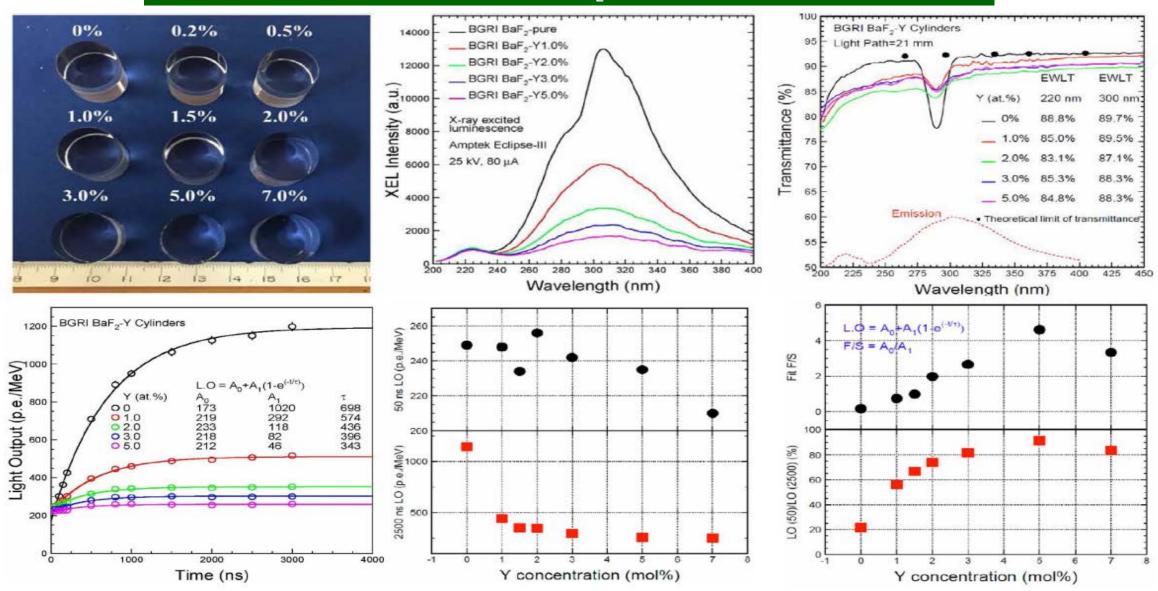
Cs-Te cathode plus La doping raises F/S from 1/5 to 5/1, NIMB 91 (1991) 61-66



Transmittance of BaF₂:La and BaF₂:La/Ce

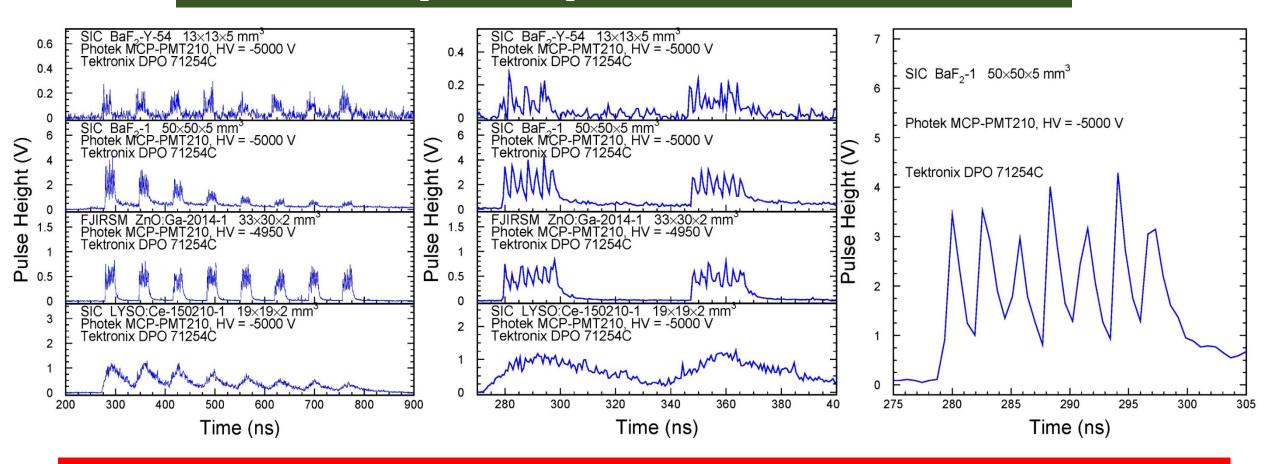
BGRI BaF₂:La/Ce 30 x 30 x 200 mm³

SIC BaF₂:La 30 x 30 x 200 mm³


Absorptions observed in La and La/Ce doped BaF₂, published in IEEE TNS 66 (2019) 506-518

Yttrium Doped Small BaF₂ Samples

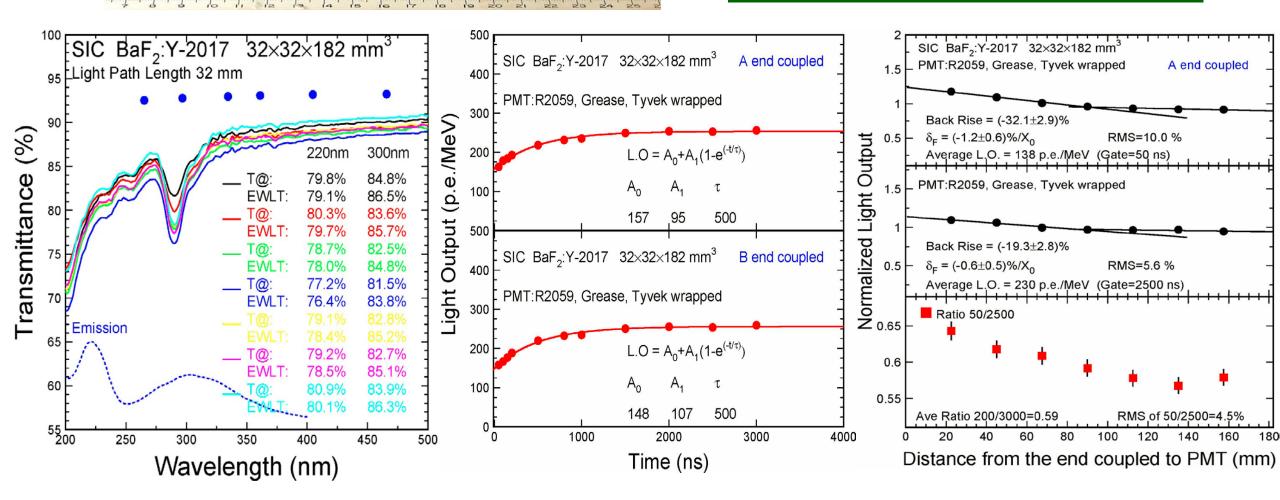
Increased F/S ratio observed in BGRI BaF₂:Y crystals, Proc. SPIE 10392 (2017)



APS Beam Test: BaF₂:Y, BaF₂, ZnO:Ga & LYSO

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals, NIMA 240 (2019) 223-239

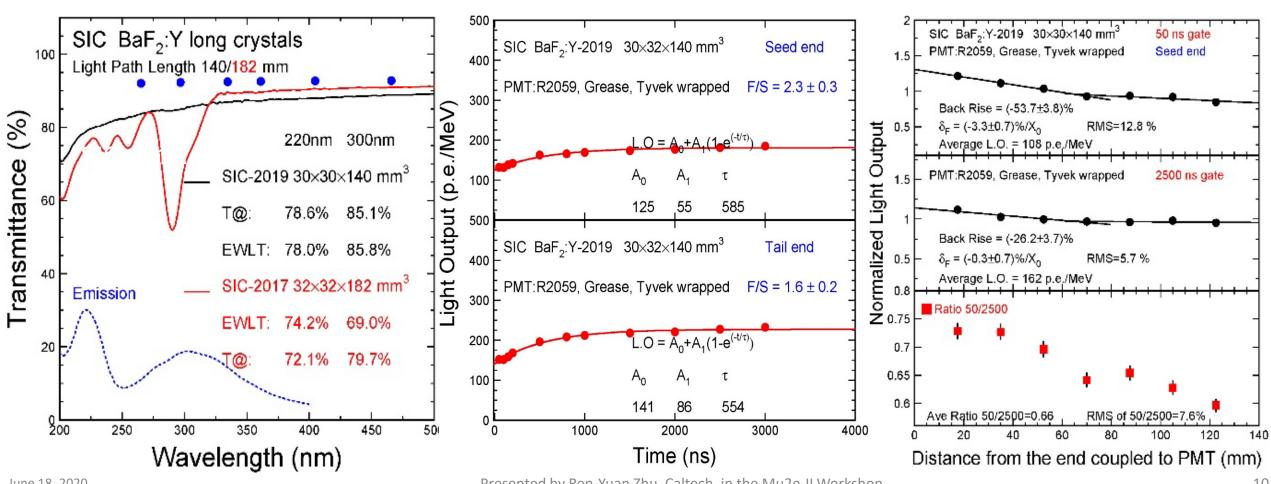
Amplitude reduction in BaF₂ and LYSO due to space charge in PMT from slow scintillation, but not in BaF₂:Y



SIC BaF₂:Y-2017

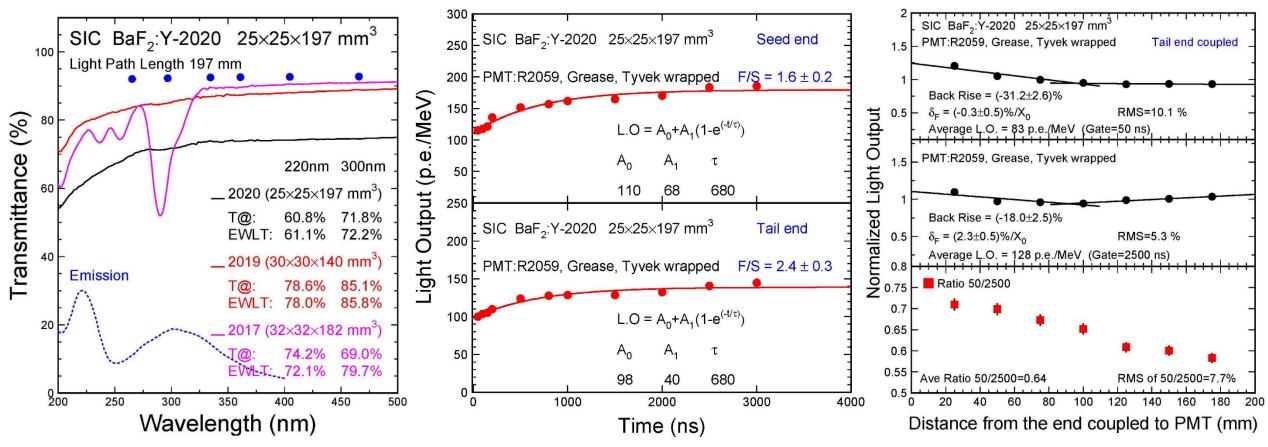
SIC BaF₂:Y-2017 32 x 32 x 182 mm³

F: 150 p.e./MeV, F/S: 1.5 F/T LRU: 10%/6%, δ_F :-1.2%/X₀



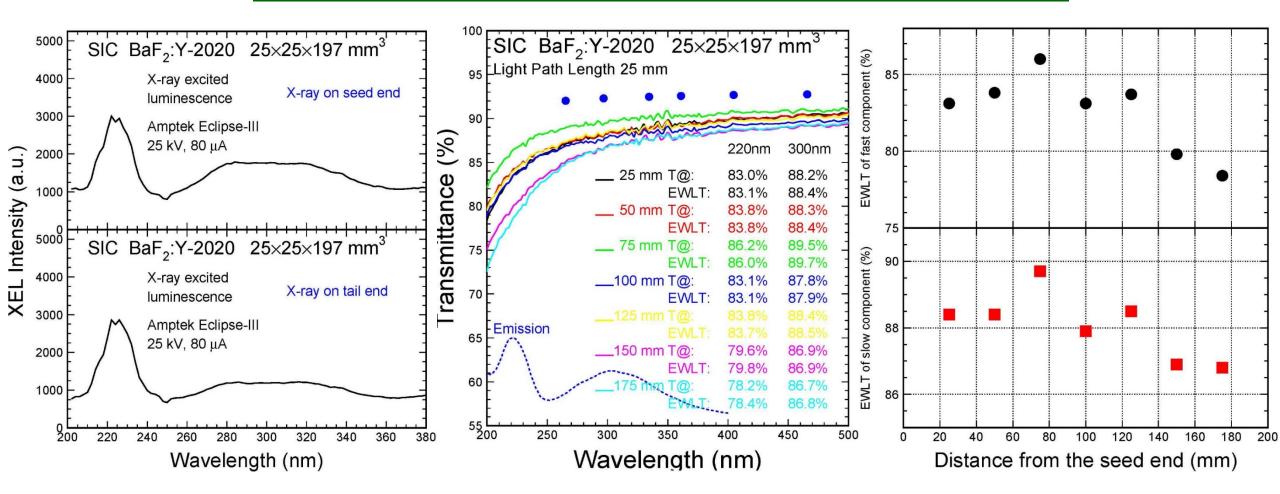
SIC BaF₂:Y-2019

F: 130 p.e./MeV, F/S: 2 $F/T LRU: 13\%/6\% \%, \delta_{F}:-3.3\%/X_{0}$



SIC BaF₂:Y-2020

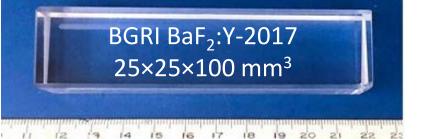
F: 100 p.e./MeV, F/S: 2 F/T LRU: 10%/5% %, δ_F :-0.3%/X₀



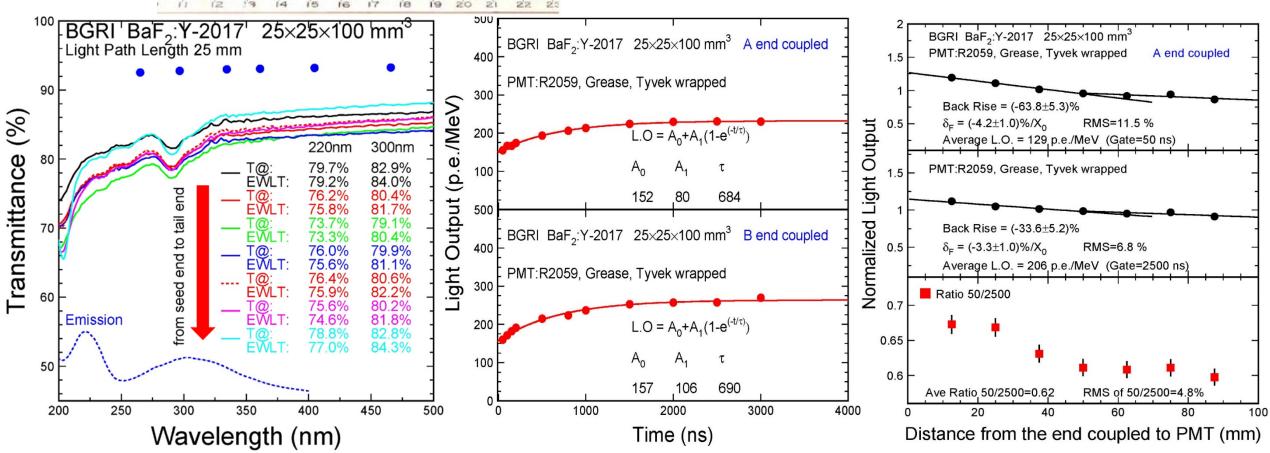
SIC BaF₂:Y-2020: Transverse T

A variation of slow emission intensity and more scattering centers starting from 15 cm from the seed

Summary: SIC BaF₂:Y Long Crystals

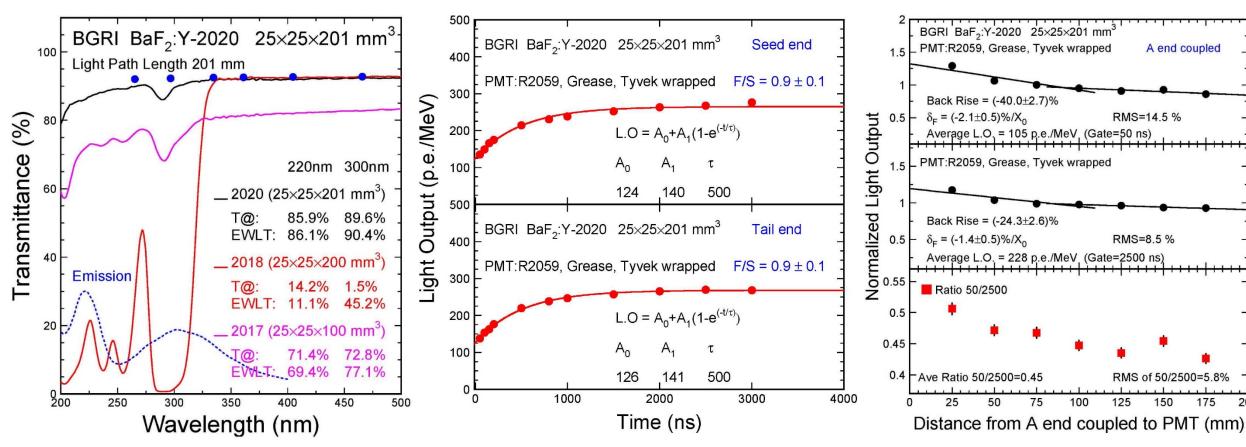


ID	Dimension (mm³)	EWLT Fast (%)	EWLT Slow (%)	Coupling end	²² Na/α	Light Response Uniformity						
					50 ns LO (p.e./MeV)	2500 ns LO (p.e./MeV)	LO(50) /LO(2500)	F	F/S	50 ns LO	2500 ns LO	LO(50)/ LO(2500)
SIC BaF ₂ :Y- 32 2017	20, 20, 400	72.1	79.7	Α	162	253	0.64	157	1.7	138 (10.0%)	230 (5.6%)	0.59 (4.5%)
	32×32×182			В	158	254	0.62	148	1.4	116 (19.1%)	200 (16.4%)	0.57 (3.7%)
SIC BaF ₂ :Y- 30×30× 2019	2020140	78.0 85.8	Α	132	181	0.73	125	2.3	108 (12.8%)	162 (5.7%)	0.66 (7.6%)	
	30×30×140		8.69	В	152	227	0.67	141	1.6	117 (15.6%)	177 (14.9%)	0.66 (1.5%)
SIC BaF ₂ :Y- 2020	2525107	61.1	72.2	Seed	115	183	0.63	110	1.6	88 (17.7%)	136 (20.5%)	0.64 (2.8%)
	25×25×197			Tail	100	141	0.71	98	2.4	83 (10.1%)	128 (5.3%)	0.64 (7.7%)



BGRI BaF₂:Y-2017

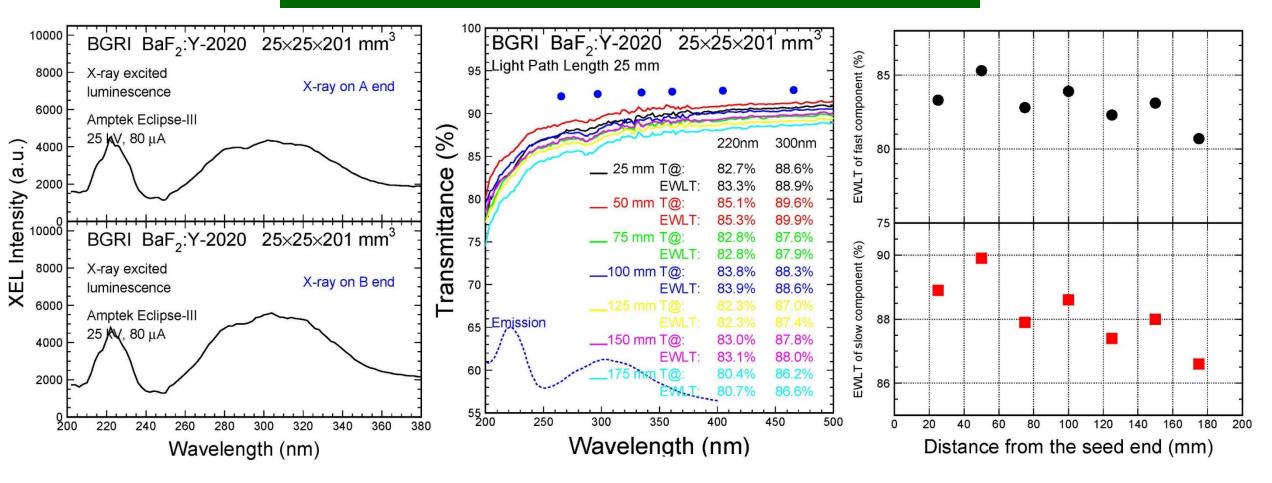
F: 150 p.e./MeV, F/S: 1.5 F/T LRU: 12%/7% %, δ_F:-4.2%/X₀



BGRI BaF₂:Y-2020

BGRI BaF₂:Y-2020, 25 x 25 x 201 mm³

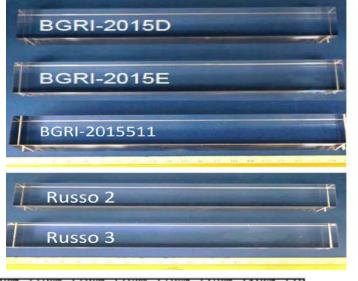
F: 125 p.e./MeV, F/S: 0.9 F/T LRU: 15%/9% %, δ_F :-2.1%/X₀



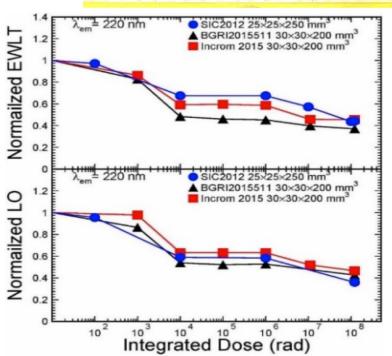
BGRI BaF₂:Y-2020: Transverse T

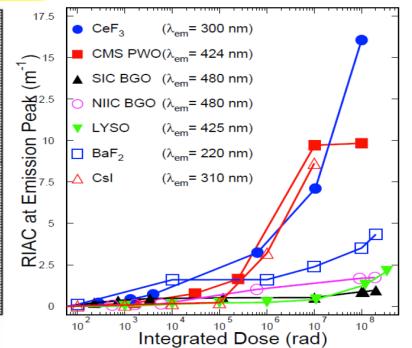
A variation of slow emission intensity and good optical quality along the crystal length

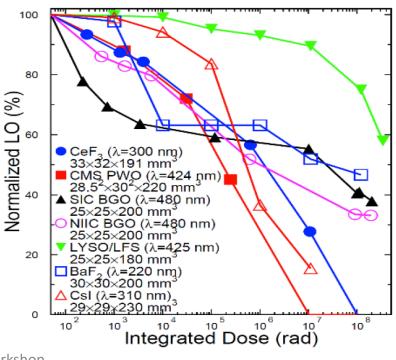
Summary: BGRI BaF₂:Y Long Crystals


ID	Dimension (mm³)	EWLT Fast (%)	EWLT Slow (%)	Coupling end	So	Light Response Uniformity										
					50 ns LO (p.e./MeV)	2500 ns LO (p.e./MeV)	LO(50) /LO(2500)	F	F/S	50 ns LO	2500 ns LO	LO(50)/ LO(2500)				
BGRI BaF ₂ :Y-		69.4	60.4	60.4	60.4	60.4	77 1	Α	155	231	0.67	152	1.9	129 (11.5%)	206 (6.8%)	0.62 (4.8%)
2017	25×25×100		77.1	В	160	258	0.62	157	1.5	129 (15.4%)	214 (13.7%)	0.60 (2.1%)				
BGRI BaE . V		11.1	.1 45.2	A	133	317	0.42	203*	NA	83 (30.6%)	229 (20.4%)	0.35 (9.4%)				
BaF ₂ :Y- 25× 2018	25×25×200			В	133	265	0.52	159*	NA	89 (26.4%)	228 (8.7%)	0.38 (17.2%)				
BGRI BaF ₂ :Y- 2020	25×25×201	61.1	72.2	A	135	268	0.50	124	0.9	105 (14.5%)	228 (8.5%)	0.45 (5.8%)				
				В	138	270	0.51	126	0.9	106 (17.1%)	221 (14.7%)	0.47 (3.1%)				

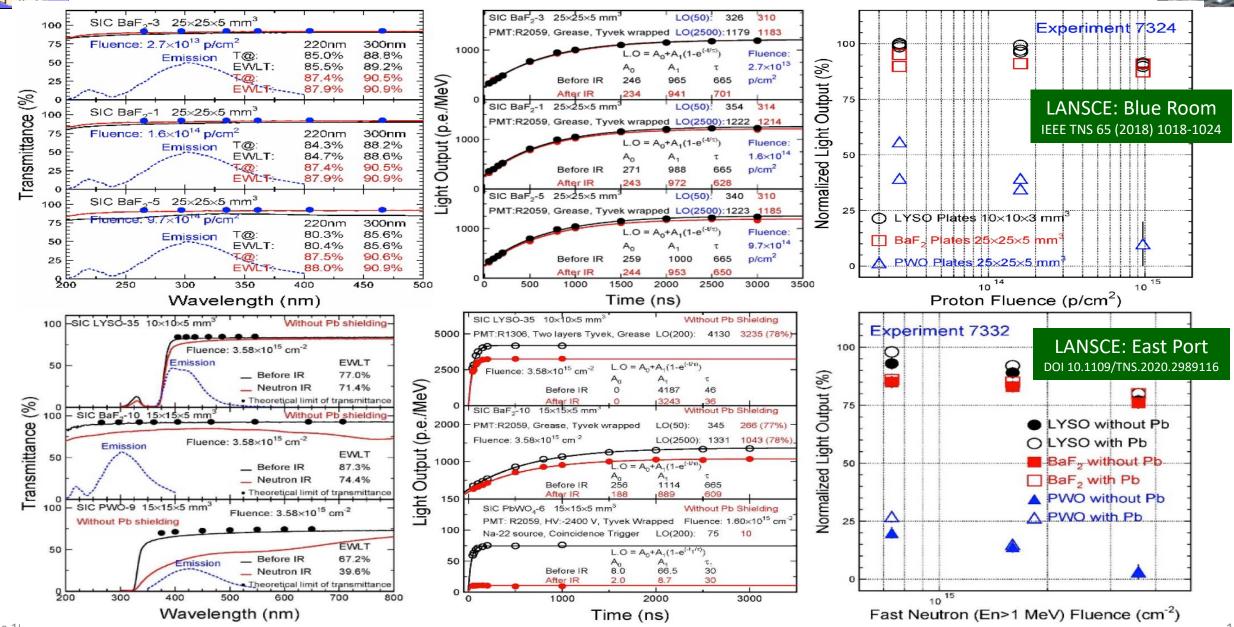
^{*}Only one component with 30~50 ns decay time is observed, but no ultrafast component


y-Ray Induced Damage in Large BaF₂

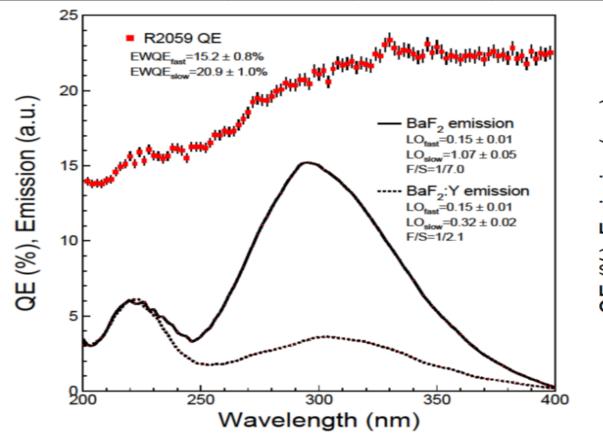


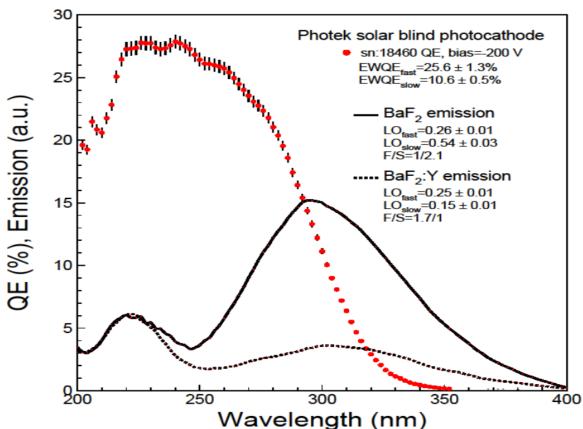


BaF₂ shows saturated damage from 10 krad to 100 Mrad, indicating good radiation resistance against γrays, IEEE TNS 63 (2016) 612-619



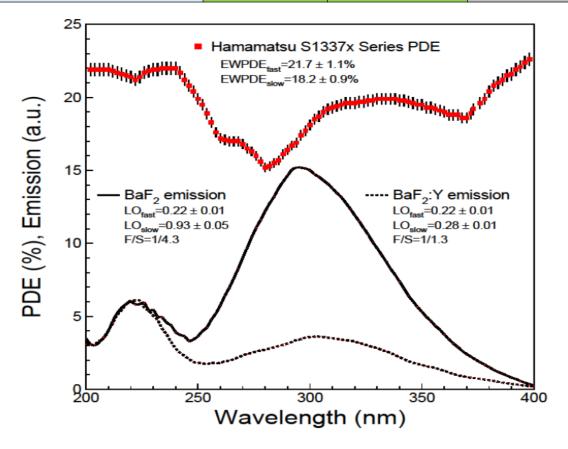
%

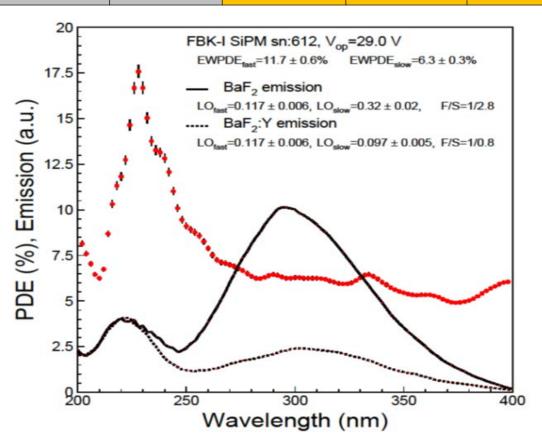




VUV PMT for BaF₂ and BaF₂:Y

Photo-detectors	EWQE _{fast} (%)	EWQE _{slow} (%)	BaF ₂ LO _{fast}	BaF ₂ LO _{slow}	BaF ₂ F/S	BaF ₂ :Y LO _{fast}	BaF ₂ :Y LO _{slow}	BaF ₂ :Y F/S
Hamamatsu R2059	15.2	20.9	0.15	1.07	1/7.0	0.15	0.32	1/2.1
Photek solar blind PMT	25.6	10.6	0.26	0.54	1/2.1	0.25	0.15	1/0.6



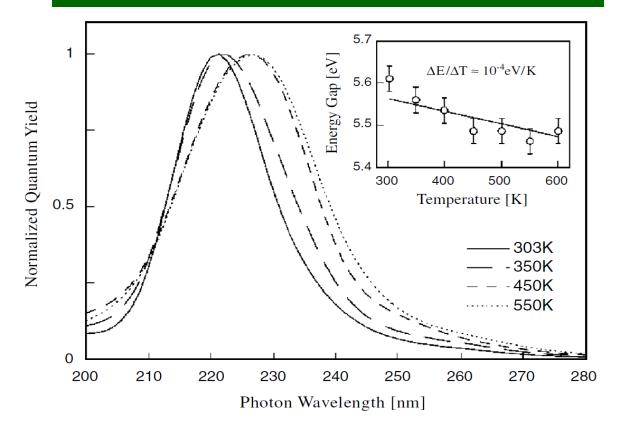


VUV SiPM for BaF₂ and BaF₂:Y

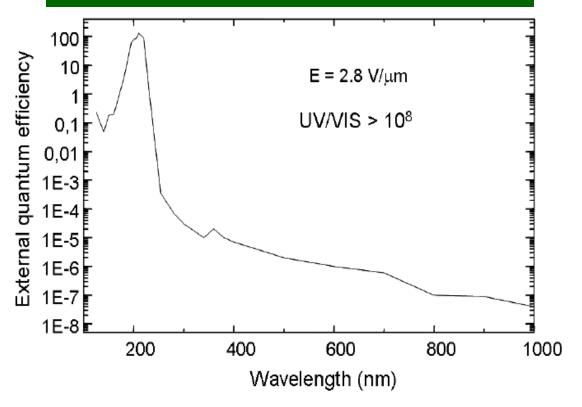
Photo-detectors	EWQE _{fast} (%)	EWQE _{slow} (%)	BaF ₂ LO _{fast}	BaF ₂ LO _{slow}	BaF₂ F/S	BaF ₂ :Y LO _{fast}	BaF ₂ :Y LO _{slow}	BaF ₂ :Y F/S	
Hamamatsu s1337x	21.7	18.2	0.22	0.93	1/4.3	0.22	0.28	1/1.3	
FBK-I SiPM	11.7	6.3	0.12	0.32	1/2.8	0.12	0.097	1/0.8	

Summary

- ☐ Undoped BaF₂ crystals provide adequate ultrafast light with 0.5 ns decay time. Yttrium doping increases its F/S ratio while maintaining the ultrafast intensity. With sub-ns pulse width BaF₂:Y promises an ultrafast calorimeter for Mu2e-II.
- \square 20 cm long BaF₂ crystals are rad hard up to 120 Mrad against ionization dose. 5 mm thick BaF₂ plates irradiation at LANSCE by 800 MeV protons up to 1 x 10¹⁵ p/cm² and fast neutrons up to 3.6 x 10¹⁵ n_{eq}/cm² did not cause significant light output loss, indicating BaF2 may be used in a severe radiation environment.
- \square 20 cm long BaF₂:Y may reach LO_F>100 p.e./MeV, F/S>2, 10% LRU and $|\delta_F|$ <3%/X₀. R&D will continue to optimize yttrium doping in large size BaF₂:Y crystals for Mu2e-II.
 - ☐ SIC plans to reduce scattering centers by refining growth parameters;
 - ☐ BGRI plans to eliminate residual cerium contamination by purifying raw material.
 - \square Caltech plans to investigate radiation hardness of BaF₂:Y crystals.
- ☐ Effort is also needed to develop VUV photodetector, such as solar-blind SiPM, LAPPD or diamond-based photodetectors.


Acknowledgements: DOE HEP Award DE-SC001192

Diamond Photodetector



E. Monroy, F. Omnes and F. Calle,"Wide-bandgap semiconductor ultraviolet photodetectors, IOPscience 2003 Semicond. Sci. Technol. 18 R33

Figure 6. Quantum efficiency of diamond photoconductors at different temperatures and Arrhenius plot of the peak value (inset). (From [Sal00].)

E. Pace and A. De Sio, "Innovative diamond photo-detectors for UV astrophysics", Mem. S.A.It. Suppl. Vol. 14, 84 (2010)

Fig. 4. External quantum efficiency extended to visible and near infrared wavelength regions. The