

Neutron-Induced Radiation Damage in Fast Inorganic Crystals

Chen Hu, Fan Yang, Liyuan Zhang, Ren-Yuan Zhu

California Institute of Technology

Jon Kapustinsky, Michael Mocko, Ron Nelson and Zhehui Wang

Los Alamos National Laboratory

October 30, 2018

Paper N21-6 presented in the IEEE NSS/MIC 2019 Conference at Manchester, UK

Inorganic Crystals are Widely Used in HEP

- Photons and electrons are fundamental particles. Precision e/γ measurements enhance physics discovery potential for future HEP experiments.
- Total absorption crystal calorimetry performance in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Challenges at future HEP Experiments:
 - Radiation hard scintillators, such as LYSO:Ce, at the energy frontier (HL-LHC);
 - Ultra-fast scintillators, such as BaF₂:Y, at the intensity frontier (Mu2e-II);
 - Cost-effective crystals with less than \$1/cc for lepton collides (ILC/FCC/CEPC).

Application of Fast Inorganic Crystals

Fast Inorganic Scintillators

	LSO/LYSO	GSO	YSO	Csl	BaF ₂	CeF ₃	CeBr ₃	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) ^①
Density (g/cm ³)	7.4	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70 [#]
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.7	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.1	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54	51.6	50.8	45.6	47.3	45.6	5.82
dE/dX (MeV/cm)	9 55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.9	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.8	1.95	1.5	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	99	15 49	153	35
Decay Time ^a (ns)	40	73	60	30 6	650 0.5	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.1	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO

d. At room temperature (20°C)

#. Softening point

1. http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx

http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html

The sub-ns fast scintillation in BaF₂ promises a very fast crystal calorimeter to face the challenge of high event rate expected by future HEP experiments at the energy and intensity frontiers

Expected Radiation at the HL-LHC

CMS MTD: 4.8 Mrad, 2.5x 10^{13} p/cm² & 3.2 x 10^{14} n_{eq}/cm² CMS FCAL: 68 Mrad, 2.1x 10^{14} p/cm² & 2.4 x 10^{15} n_{eq}/cm²

CMS MTD	η	n _{eq} (cm⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Protons (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.48E+14	2.75E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.70E+14	3.00E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.85E+14	3.17E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.50E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.00E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.25E+07	9.9E+13	1.1E+06	25.5	1020
Endcap	3.00	2.4E+15	2.67E+07	2.1E+14	2.3E+06	67.5	2700

Particle Energy Spectra at HL-LHC

FLUKA simulations: neutrons and charged hadrons peaked at MeV and several hundreds MeV, respectively. Neutron and proton induced damages were investigated at the East Port and the Blue Room of the Los Alamos Neutron Science Center (LANSCE), respectively

6

Radiation Damage in Inorganic Crystals

- Possible damage effects are scintillation mechanism damage, induced absorption and phosphorescence, where induced absorption degrades crystal transparency and light output.
- Ionization dose induced damage was investigated for BaF₂, BGO, CeF₃, undoped CsI, LSO/LYSO/LFS and PWO by using Co-60 and Cs-137 sources at Caltech, as well as the JPL TID and the Sandia GIF facilities.
- Proton induced damage was investigated for BaF₂, BGO , CeF₃, LYSO and PWO crystals by using 800 MeV protons at LANSCE and 24 GeV protons at CERN IRRAD facilities. Paper N2-5
- Neutron induced damage was investigated for BaF₂, LYSO and PWO crystals in three experiments since 2015 at LANSCE : 6991 (2015), 7332 (2016) and 7638 (2017). This paper reports neutron induced damage.

Neutron Irradiation at LANSCE

n/y/p Spectra: LANSCE 6991,7332 and 7638

n/y/p spectra calculated by using MCNPX (Monte Carlo N-Particle eXtended) package tallied in the largest sample volume (averaging)

Conversion Neutron to 1 MeV n_{eq}

Presentation O4-10-2 in the SCINT 2019 Conference by Ren-Yuan Zhu, Caltech, at Sendai, Japan

Transmittance and Light Output

LYSO, BaF₂ and PWO irradiated up to 8.3×10¹⁵ n_{eg}/cm²

Result of TF:n LANSCE 7332

LYSO and BaF₂ are radiation hard up to 8.3 $\times 10^{15}$ n_{eq}/cm²

Combined Neutron IR for LYSO

Consistent result obtained from three experiments

Neutron and Proton Induced RIAC in LYSO

LYSO crystals from different vendors show consistent damage for 1 MeV_{eq} neutrons with RIAC @ 430 nm = $1.4 \times 10^{-15} F_{n}$ a factor of ten less than protons

Summary

- LYSO crystals show the best radiation hardness among all tested crystals. About 5% light output loss is found in 14 x 14 x 1.5 mm plates after 8 x 10¹⁵ n_{eq}/cm². BaF₂ shows a similar radiation hardness to LYSO at high fluence. Investigation continues on BaF₂:Y crystals, and to compare damage in various inorganic crystal scintillators induced by ionization dose, protons and neutrons.
- While both protons and neutrons cause damage in inorganic scintillators, damage induced by protons is an order of magnitude larger than that from neutrons, presumably due to contributions from ionization energy loss.
- Commercial LYSO crystals are expected to meet CMS BTL radiation hardness specification: Induced absorption <3 m⁻¹ for TF:n of 3 x 10¹⁴ n/cm² and TF:p of 3 x 10¹³ p/cm².

Acknowledgements

This work was supported in part by the US Department of Energy Grants DE-SC0011925 and DE-AC52-06NA25396.