

Radiation Hardness of LYSO and BaF₂ Crystals against y-rays, Protons and Neutrons

Chen Hu, Fan Yang, Liyuan Zhang, and Ren-Yuan Zhu

California Institute of Technology

October 3, 2019

Presentation O4-10-2 in the SCINT 2019 Conference at Sendai, Japan

Crystals are Widely Used in HEP

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential for future HEP experiments.
- Total absorption crystal calorimetry performance in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Challenges at future HEP Experiments:
 - Radiation hard scintillators at the energy frontier (HL-LHC);
 - Ultra-fast scintillators at the intensity frontier (Mu2e-II);
 - Cost-effective crystals for lepton collides (ILC/FCC/CEPC).

CMS LYSO+SiPM BTL for HL-LHC

CMS Hermetic Timing Concept

BTL: LYSO/SiPM

BTL technology choice – SiPM/LYSO :

ETL: Si

- Timing performance <20 ps with MIPs in PET crystals.</p>
- Radiation hardness established at the required level.
- Extensive experience with this technology.
- Cost effective mass market components

Radiation Expected by CMS BTL

MTD TDR: assuming 5×10^{34} cm⁻²s⁻¹, 3,000 fb⁻¹ & a safety factor of 1.5 Radiation spec: λ_{in} <3 m⁻¹ for 4.4 Mrad, 2.5 x 10^{13} p/cm² & 3.0 x 10^{14} n_{eq}/cm²

CMS MTD	η	n _{eq} /cm ⁻²	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton* (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.5E+14	3.1E+06	2.2E+13	2.7E+05	2.7	122
Barrel	1.15	2.7E+14	3.4E+06	2.4E+13	3.0E+05	3.8	169
Barrel	1.45	2.9E+14	3.6E+06	2.5E+13	3.1E+05	4.4	196
Endcap	1.60	2.3E+14	2.8E+06	2.0E+13	2.5E+05	2.9	128
Endcap	2.00	4.5E+14	5.6E+06	3.9E+13	4.9E+05	7.5	338
Endcap	2.50	1.1E+15	1.4E+07	9.9E+13	1.2E+06	25.5	1148
Endcap	3.00	2.6E+15	3.2E+07	2.2E+14	2.8E+06	73.5	3308

October 3, 2019

Particle Energy Spectra at LHC

FLUKA simulations: neutrons and charged hadrons peaked at MeV and several hundreds MeV respectively. We investigate neutron and proton induced damages at East Port and Blue Room of LANSCE.

Radiation Damage in Crystals

- Possible damage effects are scintillation mechanism damage, induced absorption and phosphorescence, where induced absorption degrades crystal transparency and light output.
- Ionization dose induced damage was investigated for BaF₂, BGO, CeF₃, undoped CsI, LSO/LYSO/LFS and PWO by using Co-60 and Cs-137 sources at Caltech, as well as the JPL TID and the Sandia GIF facilities.
- Proton induced damage was investigated for BaF₂, BGO , CeF₃, LYSO and PWO crystals by using 800 MeV protons at LANSCE and 24 GeV protons at CERN IRRAD facilities.
- Neutron induced damage was investigated for BaF₂, LYSO and PWO crystals at LANSCE.
- Results of LYSO and BaF₂ crystals are presented in this report.

Results of TID: y for BaF₂

Consistent damage in 20 cm long BaF₂ crystals from three vendors

40%/45% LO loss for the fast/slow component after 120 Mrad

Results of TID:y for LYSO

F. Yang et al., IEEE Trans. Nucl. Sci. 63, pp. 612-619 (2016)

LYSO crystals from six vendors show < 3 m⁻¹ after 20 Mrad

October 3, 2019

Protons: LANSCE 6990, 7324 and 8051

Crystals are characterized at Caltech. Transmittance was monitored by a fiber based spectrophotometer during irradiation for long samples

Result of TF:p LANSCE 7324

C. Hu et al., IEEE Trans. Nucl. Sci. vol. 65, pp. 1018-1024 (2018)

Excellent radiation hardness of LYSO and BaF_2 up to 10^{15} p/cm²

Results of TF:p for LYSO

Damages induced by protons of different energies follows: $RIAC_{430} =$ $1.3 \times 10^{-14} F_{n}$ for LYSO crystals of different size and from four vendors, indicating $< 3 \text{ m}^{-1}$ after $2 \times 10^{14} \text{ p/cm}^2$

Neutron irradiation at LANSCE

Samples are located at East Port in the Target-4, about 1.2 m away Bldg 823 from the neutron production target Line D Proton Beam Control Room/ Data Bldg. 541 Acquisition East Port Bldg. 7 Target 2 Bldg Blue Room 1138 2FP120 Target-4 Sample Holder 4FP60F GEANIE -p capture Bldg 382 Bldg 370 Vacuum ICE House 4EP15E Bldg. Neutron Production Target 1265 Bldg. 371 Bldg. 372 50 cm 4FP30L Concrete & Steel Shielding Bldg 34 Blda 616 4FP15L

Los Alamos Neutron Science Center (LANSCE)

Result of TF:n LANSCE 7332

C. Hu et al., J. Phys.: Conference Series 1162, 012020 (2019)

October 3, 2019

Results of TF:n for LYSO

Neutron induced damage follows a relation: $RIAC_{430} =$ $1.4 \times 10^{-15} F_n$

in LYSO crystals from three different vendors, indicating < 3 m⁻¹ after 2 × 10¹⁵ n/cm²

On the face value, neutron induced damage is about one order of magnitude smaller than protons.

Summary

- Radiation damage in inorganic scintillators is investigated up to 340 Mrad, 8 x 10¹⁵ p/cm² and 8 x 10¹⁵ n_{eq}/cm². LYSO crystals show the best radiation hardness among all tested crystals. About 5% light output loss is found in 14 x 14 x 1.5 mm plates after 200 Mrad, 3 x 10¹⁴ p/cm² and 3 x 10¹⁵ n/cm².
- BaF₂ is promising: 40%/45% of fast/slow light output loss is observed after 120 Mrad for 20 cm long crystals.
- While both protons and neutrons cause damage in inorganic scintillators, damage induced by protons is an order of magnitude larger than that from neutrons, presumably due to contributions from ionization energy loss.
- Commercial LYSO crystals are expected to meet CMS BTL radiation hardness specification: Induced absorption <3 m⁻¹ for TID:y of 4.4 Mrad, TF:p of 2.5 x 10¹³ p/cm² and TF:n of 3 x 10¹⁴ p/cm². Qualification for vendors is under way.

Acknowledgements

Drs. Aaron Kenna of JPL and Sally Seidel of UNM helped y-ray irradiation at JPL and Sandia, respectively. Drs. David Bailleux and Federico Ravotti helped proton irradiation at the CERN IRRAD facility. Drs. Jon Kapustinsky, Michael Mocko, Ron Nelson and Zhehui Wang helped proton and neutron irradiations at LANSCE.

This work was supported in part by the US Department of Energy Grants DE-SC0011925 and DE-AC52-06NA25396.

Proton Irradiation at CERN RTF

200 BOET LFS Plates of 14 x 14 x 1.5 mm with Five Holes

LYSO Plate, 14x14x1.5 mm³

24 GeV Proton Beam Gaussian with a FWHM of about 12 mm

ID	Dimension (mm³)	Facility	Protons (GeV)	Irradiation Set	Fluence (p/cm²)	Error (+/- %)
LFS BOET-6	14×14×1.5	CERN	24	2045	9.97×10 ¹³	7.0
LFS BOET-7	14×14×1.5	CERN	24	2045	9.97×10 ¹³	7.0
LFS BOET-8	14×14×1.5	CERN	24	2046	4.48×10 ¹⁴	8.4
LFS BOET-9	14×14×1.5	CERN	24	2046	4.48×10 ¹⁴	8.4
LFS BOET-10	14×14×1.5	CERN	24	2047	8.21×10 ¹⁴	7.6
LFS BOET-11	14×14×1.5	CERN	24	2047	8.21×10 ¹⁴	7.6
LFS BOET-12	14×14×1.5	CERN	24	2048	1.65×10 ¹⁵	7.5
LFS BOET-13	14×14×1.5	CERN	24	2048	1.65×10 ¹⁵	7.5
LFS BOET-14	14×14×1.5	CERN	24	2049	8.19×10 ¹⁵	7.3
LFS BOET-15	14×14×1.5	CERN	24	2049	8.19×10 ¹⁵	7.3

n/ɣ/p: LANSCE 6991,7332 and 7638

n/y/p spectra calculated by using MCNPX (Monte Carlo N-Particle eXtended) package tallied in the largest sample volume (averaging).

Conversion Neutron to 1 MeV n_{eq}

