

Ultrafast Radiation Hard Inorganic Scintillators for Future HEP and NP Experiments

Ren-Yuan Zhu

California Institute of Technology

December 9, 2018

Why Ultrafast Crystals?

- Precision photons and electrons measurements enhance physics discovery potential in HEP experiments.
- Performance of crystal calorimeter is well understood for e/γ , and is investigated for jets measurements :
 - The best possible energy resolution and position resolution;
 - Good e/ γ identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout (CEPC?).
- Ultrafast and rad hard crystals for HEP & NP experiments:
 - At the energy frontier (LYSO BTL & Shashlik Cal for CMS at HL-LHC);
 - At the intensity frontier (BaF₂:Y calorimeter for Mu2e-II);
 - For GHz hard X-ray imaging (Ultrafast front imager for MaRIE at LANL).

Application of Ultrafast Crystals

High-Energy and Ultrafast X-Ray Imaging Technologies and Applications

Organizers: Peter Denes, Sol Gruner, Michael Stevens & Zhehui (Jeff) Wang¹ (Location/Time: Santa Fe, NM, USA /Aug 2-3, 2016)

The goals of this workshop are to gather the leading experts in the related fields, to prioritize tasks for ultrafast hard X-ray imaging detector technology development and applications in the next 5 to 10 years, see Table 1, and to establish the foundations for near-term R&D collaborations.

Performance	Type I imager	Type II imager		
X-ray energy	30 keV	42-126 keV		
Frame-rate/inter-frame time	0.5 GHz/2 ns	3 GHz / 300 ps		
Number of frames	10	10 - 30		
X-ray detection efficiency	above 50%	above 80%		
Pixel size/pitch	≤ 300 μm	< 300 µm		
Dynamic range	10 ³ X-ray photons	≥ 10 ⁴ X-ray photons		
Pixel format	64 x 64 (scalable to 1 Mpix)	1 Mpix		

Table I. High-energy photon imagers for MaRIE XFEL

2 ns and 300 ps inter-frame time requires very fast sensor. Will crystal work?

Fast and Ultrafast Inorganic Scintillators

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94 ^[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <mark>0.6</mark>	600 <mark>0.6</mark>	<1	1.5	4	148 <mark>6</mark>	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

THE OF TH

LuAG:Ce Ceramic Samples

Radiation Hard LuAG:Ce Ceramics

Investigated at LANSCE up to 3×10^{14} p/cm² of 800 MeV, and at Sadia up to 220 Mrad

On-going R&D to suppress µs slow component by Pr doping or co-doping

Ultrafast and Slow Light from BaF₂

BaF₂ has an ultrafast scintillation component with sub-ns decay, and a 600 ns slow component.

The amount of the fast light is similar to undoped CsI, and is 1/5 of the slow component.

Selective readout of the ultrafast component may be realized by (1) selective doping in crystals or (2) selective readout with solar blind photodetector.

Slow Suppression in the Nineties

Yttrium Doped Barium Fluoride: BaF₂:Y

Significant increased F/S ratio in BaF₂:Y; Sub-ns FWHM by MCP-PMT

Temporal Response Measured at APS

APS 30 keV X-Ray Hybrid Beam

Singlet (16 mA, 50 ps) isolated from 8 septuplets (88 mA) with 1.594 µs gap; 8 septuplets (88 mA) with a 68 ns period and a 51 ns gap; Each septuplet of 17 ns consists of 7 bunches (27 ps) and 2.83 ns apart; Total beam current: 102 mA, rate: 270 kHz, period: 3.7 μs.

Test Setup at APS Beam Test

Crystals, MCP-PMT and gate unit were in the hutch of the APS 10-ID site; DPO, delay generator and HV power supplier were in the control room; MCP-PMT signal went through a 15 m wideband SMA cable to DPO

Ultrafast Photek MCP-PMT

Caltech Team at APS of ANL (July 2 -3, 2018)

BaF₂:Y Response to Hybrid Beam

Data taken with ultrafast Photek PMT & gate unit for septuplet bunches show BaF₂:Y's capability for 30 keV X-ray imaging with 2.83 ns bunch spacing. No pile-up for 8 septuplets

Data were also taken for singlet bunches to show various crystal's temporal response.

Could be a service of the service of

Septuplets: BaF₂:Y, BaF₂, ZnO:Ga & LYSO

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals, showing a proof-of-principle for the type –I imager

Amplitude reduction in BaF_2 and LYSO due to space charge in PMT from slow scintillation, but not in BaF_2 :Y Reducing the 15 m cable length will reduce BaF_2 pulse width to sub-ns for a much better bunch separation

November 6, 2018

Singlet: BaF₂:Y, BaF₂, ZnO & LYSO

Amplitude of BaF₂:Y and BaF₂ higher than LYSO and ZnO:Ga, expected as light output in the 1st ns

Decay of BaF₂:Y and BaF₂ shorter than ZnO:Ga, but longer than y-ray data due to the 15 m cable

Temporal Response of BaF₂:Y

Significantly slower responses observed at APS with a 15 m cable as compared to pulses measured with a 1 m cable at Caltech

Singlet: Temporal Response

YAP:Yb, ZnO:Ga, YAG:Yb and GaO have pulse width less than 10 ns

November 6, 2018

Summary: Temporal Response

Crystal	Vendor	ID	Dimension (mm³)	Emission Peak (nm)	EWLT (%)	LO (p.e./MeV)	Light Yield in 1 st ns (ph/MeV)	Rising Time (ns)	Decay Time (ns)	FWHM (ns)
BaF ₂ :Y	SIC	4	10×10×5	220	89.1	258	1200	0.2	1.2	1.4
BaF ₂	SIC	1	50×50×5	220	85.1	209	1200	0.2	1.2	1.6
YAP:Yb	Dongjun	2-2	Ф40×2	350	77.7	9.1*	28	0.4	1.1	1.7
ZnO:Ga	FJIRSM	2014-1	33×30×2	380	7	76*	157	0.4	1.8	2.3
YAG:Yb	Dongjun	4	10×10×5	350	83.1	28.4*	24	0.3	2.5	2.7
Ga ₂ O ₃	Tongji	2	7x7x2	380	73.8	259	43	0.2	5.3	7.8
YAP:Ce	Dongjun	2102	Ф50×2	370	54.7	1605	391	0.8	34	27
LYSO:Ce	SIC	150210-1	19x19×2	420	80.1	4841	740	0.7	36	28
LuYAP:Ce	SIPAT	1	10×10×7	385	١	1178	125	1.1	36	29
LuAG:Ce Ceramic	SIC	S2	25×25×0.4	520	52.3	1531	240	0.6	50	40
YSO:Ce	SIC	51	25×25×5	420	72.6	3906	318	2.0	84	67
GAGG:Ce	SIPAT	5	10×10×7	540	١	3212	239	0.9	125	91

Samples are ordered based on its FWHM to singlet bunches

November 6, 2018

y-Ray Induced Damage in Large Samples

November 6, 2018

Proton and Neutron Induced Damage

November 6, 2018

Presentation by Ken-Yuan Zhu in the 2018 CPAD Workshop at Brown University, Providence, KI

The 1st 19 cm BaF₂:Y from SIC

Average L.O. = 94 p.e./MeV, RMS=22

80

100

Distance from the end coupled to PMT (mm)

120

140

160

1_{0.4}

180

Performance of the 2nd SIC 18 cm BaF₂:Y

F/S of 1.6 and LRU of 10% for the fast

1st BGRI 10 cm BaF₂:Y Sample

F/S of 3.5 is found, and good correlation between LO and EWLT

Performance of BGRI 10 cm BaF₂:Y

F/S increased up to 1.9; LRU: 12% and 6.8% for fast and total

All Inorganic Cs Pb Halide Perovskite QD

November 6, 2018

Presentation by Ren-Yuan Zhu in the 2018 CPAD Workshop at Brown University, Providence, RI

Time (ns)

Summary

□ Commercially available undoped BaF₂ crystals provide ultrafast light with sub-ns decay time. Yttrium doping in BaF₂ crystals increases its F/S ratio significantly while maintaining the intensity of the sub-ns fast component. With sub-ns pulse width BaF₂:Y is a promising material for the proposed Mu2e-II calorimeter and the front imager for GHz hard X-ray imaging.

20 cm long BaF₂ crystals are rad hard up to 120 Mrad. Results of the LANL irradiation experiments show 800 MeV protons and fast neutrons up to 1 x 10¹⁵ p/cm² and 3.6 x 10¹⁵ n/cm² respectively do not cause significant light output loss in 5 mm thick LYSO and BaF₂ plates, promising a very fast and robust detector in a severe radiation environment, such as the HL-LHC.

Additional ultrafast scintillators under development are ZnO:Ga films, quantum confinement based all inorganic Cs Pb halide perovskite QD.

Acknowledgements: DOE HEP Award DE-SC0011925

Hamamatsu S13371 VUV SiPM

November 6, 2018

Diamond Photodetector

E. Monroy, F. Omnes and F. Calle,"Wide-bandgap semiconductor ultraviolet photodetectors,IOPscience 2003 Semicond. Sci. Technol. 18 R33

E. Pace and A. De Sio, "Innovative diamond photo-detectors for UV astrophysics", Mem. S.A.It. Suppl. Vol. 14, 84 (2010)

Figure 6. Quantum efficiency of diamond photoconductors at different temperatures and Arrhenius plot of the peak value (inset). (From [Sal00].)

Fig.4. External quantum efficiency extended to visible and near infrared wavelength regions. The

CPULEORNIA HISTILITURO

Existing Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20	
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS	
Accelerator	SPEAR	LEP	CESR	LEAR	Tevatron	PEP	КЕКВ	LHC	
Laboratory	SLAC	CERN	Cornell	CERN	FNAL	SLAC	КЕК	CERN	
Crystal Type	Nal:Tl	BGO	CsI:TI	CsI:TI	Csl	CsI:TI	CsI:TI	PWO	
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0	
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29	
Crystal number	672	11,400	7,800	1,400	3,300	6,580	8,800	75,848	
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25	
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11	
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2	
Photo-detector	PMT	Si PD	Si PD	WS+Si PD	PMT	Si PD	Si PD	Si APD	
Gain of Photo-detector	Large	1	1	1	4,000	1	1	50	
σ _N /Channel(MeV)	0.05	0.8	0.5	0.2	Small	0.15	0.2	40	
Future HEP experiments need brighter and faster crystals with better radiation hardness									

Fitting Temporal Response

Rise time, decay time and FWHM pulse width are estimated by a simple fit with two exponential components

Fitting:

$$\mathsf{V} = A(e^{-\frac{t}{\tau_d}} - e^{-\frac{t}{\tau_r}}) + \mathsf{B}$$

- A: amplitude,
- B: background noise or slow component,
- τ_r : rise time,
- τ_d : decay time.

Sub-ns pulse observed by Photek MCP-PMT 240 for Cherenkov light

Transmittance of BaF₂:La and BaF₂:La/Ce

Significant absorptions observed in both La and La/Ce doped BaF₂

Light Output of BaF₂:La and BaF₂:La/Ce

F/S increased up to 1; LRU: Poor LRU for the fast component

The 2nd SIC BaF₂:Y Sample of 18 cm

Low yttrium doping level needs to be optimized

