



# **Development of Large Size Yttrium Doped BaF<sub>2</sub>** Crystals for Future HEP Experiments Chen Hu<sup>1</sup>, Chao Xu<sup>2</sup>, Liyuan Zhang<sup>1</sup> Qinhui Zhang<sup>2</sup> and Ren-Yuan Zhu<sup>1</sup> <sup>1</sup>California Institute of Technology

<sup>2</sup>Beijing Glass Research Institute

November 14, 2018



# Introduction



- Mu2e-I at Fermilab is building a pure CsI calorimeter, which has 30 ns fast scintillation and survives ionization dose up to 100 krad. A radiation level beyond 100 krad is expected by Mu2e-II, where CsI will be blackened and can not be cured.
- With sub-ns fast scintillation and excellent radiation hardness BaF<sub>2</sub> crystals promise a very fast and robust calorimeter for Mu2e-II.
- There are two effective approaches to handle the 600 ns slow scintillation in BaF<sub>2</sub>: solar blind photodetector and/or selective doping. Recent progress in yttrium doped BaF<sub>2</sub> promises an ultrafast calorimeter for future HEP applications.
- Mass production capability of BaF<sub>2</sub> exists in industry:
  - BGRI (China), Incrom (Russia) and SICCAS (China): tested;
  - Hellma (Germany): in contact
- Status of large size BaF<sub>2</sub> crystals for the Mu2e-II experiments is reported.

# Application of Fast Inorganic Scintillators





November 14, 2018

Paper N21-04 presented by Ren-Yuan Zhu, Caltech, in the IEEE NSS 2018 conference at Sydney, Australia

3



# **Fast Inorganic Scintillators**



|                                     | LSO/LYSO | GSO  | YSO  | Csl        | BaF <sub>2</sub> | CeF <sub>3</sub> | CeBr <sub>3</sub> | LaCl <sub>3</sub> | LaBr <sub>3</sub> | Plastic scintillator<br>(BC 404) <sup>①</sup> |
|-------------------------------------|----------|------|------|------------|------------------|------------------|-------------------|-------------------|-------------------|-----------------------------------------------|
| Density (g/cm <sup>3</sup> )        | 7.4      | 6.71 | 4.44 | 4.51       | 4.89             | 6.16             | 5.23              | 3.86              | 5.29              | 1.03                                          |
| Melting point (°C)                  | 2050     | 1950 | 1980 | 621        | 1280             | 1460             | 722               | 858               | 783               | 70 <sup>#</sup>                               |
| Radiation Length (cm)               | 1.14     | 1.38 | 3.11 | 1.86       | 2.03             | 1.7              | 1.96              | 2.81              | 1.88              | 42.54                                         |
| Molière Radius (cm)                 | 2.07     | 2.23 | 2.93 | 3.57       | 3.1              | 2.41             | 2.97              | 3.71              | 2.85              | 9.59                                          |
| Interaction Length (cm)             | 20.9     | 22.2 | 27.9 | 39.3       | 30.7             | 23.2             | 31.5              | 37.6              | 30.4              | 78.8                                          |
| Z value                             | 64.8     | 57.9 | 33.3 | 54         | 51.6             | 50.8             | 45.6              | 47.3              | 45.6              | 5.82                                          |
| dE/dX (MeV/cm)                      | 9.55     | 8.88 | 6.56 | 5.56       | 6.52             | 8.42             | 6.65              | 5.27              | 6.9               | 2.02                                          |
| Emission Peak <sup>a</sup> (nm)     | 420      | 430  | 420  | 420<br>310 | 300<br>220       | 340<br>300       | 371               | 335               | 356               | 408                                           |
| Refractive Index <sup>b</sup>       | 1.82     | 1.85 | 1.8  | 1.95       | 1.5              | 1.62             | 1.9               | 1.9               | 1.9               | 1.58                                          |
| Relative Light Yield <sup>a,c</sup> | 100      | 45   | 76   | 4.2<br>1.3 | 42<br>4.8        | 8.6              | 99                | 15<br>49          | 153               | 35                                            |
| Decay Time <sup>a</sup> (ns)        | 40       | 73   | 60   | 30<br>6    | 650<br>0.6       | 30               | 17                | 570<br>24         | 20                | 1.8                                           |
| d(LY)/dT <sup>d</sup> (%/°C )       | -0.2     | -0.4 | -0.1 | -1.4       | -1.9<br>0.1      | ~0               | -0.1              | 0.1               | 0.2               | ~0                                            |

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO

d. At room temperature (20°C)

#. Softening point

1. http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx

http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML\_PAGES/216.html

The sub-ns fast scintillation in BaF<sub>2</sub> promises a very fast crystal calorimeter to face the challenge of high event rate expected by future HEP experiments at the intensity frontier

# Ultrafast and Slow Light from BaF<sub>2</sub>

 $BaF_2$  has a fast scintillation component with sub-ns decay time, and a 600 ns slow component.

The amount of the fast light is similar to undoped CsI, and is 1/5 of the slow component.

Spectroscopic readout of the fast component may be realized by (1) selective doping with rare earths or (2) a solar blind photodetector.



# **Slow Suppression: RE Doping & SB Readout**







#### November 14, 2018



## **Yttrium Doped Barium Fluoride: BaF<sub>2</sub>:Y**



Significant increased F/S ratio in BaF<sub>2</sub>:Y. Sub-ns FWHM by MCP-PMT. See also paper N40-3.





## **y-Ray Induced Damage in Large Samples**





Presentation by Ren-Yuan Zhu in the 2018 LANSCE User Group Meeting at Santa Fe



## **Proton and Neutron Induced Damage**





Presentation by Ken-Yuan Zhu in the 2018 LANSCE User Group Meeting at Santa Fe



## Transmittance of BaF<sub>2</sub>:La and BaF<sub>2</sub>:La/Ce





#### Significant absorptions observed in both La and La/Ce doped BaF<sub>2</sub>

November 14, 2018



## Light Output of BaF<sub>2</sub>:La and BaF<sub>2</sub>:La/Ce



### F/S increased up to 1; LRU: Poor LRU for the fast component





### The 1<sup>st</sup> 19 cm BaF<sub>2</sub>:Y from SIC







Distance from the end coupled to PMT (mm)



# The 2<sup>nd</sup> SIC BaF<sub>2</sub>:Y Sample of 18 cm



### Low yttrium doping level needs to be optimized





# Performance of the 2<sup>nd</sup> SIC 18 cm BaF<sub>2</sub>:Y



### F/S of 1.6 and LRU of 10% for the fast. See also paper N37-4.





## 1<sup>st</sup> BGRI 10 cm BaF<sub>2</sub>:Y Sample



#### F/S of 3.5 is found, and good correlation between LO and EWLT





### **Performance of BGRI 10 cm BaF<sub>2</sub>:Y**



### F/S increased up to 1.9; LRU: 12% and 6.8% for fast and total





# Summary



- □ Commercially available undoped BaF<sub>2</sub> crystals provide sufficient ultrafast light with sub-ns decay time. Yttrium doping in BaF<sub>2</sub> crystals increases its F/S ratio significantly while maintaining the intensity of the sub-ns fast component. With sub-ns pulse width BaF<sub>2</sub>:Y promises an ultrafast calorimeter for Mu2e-II.
- 20 cm long BaF<sub>2</sub> crystals are rad hard up to 120 Mrad against ionization dose. Results of the LANL experiments show 800 MeV protons and fast neutrons up to 1 x 10<sup>15</sup> p/cm<sup>2</sup> and 3.6 x 10<sup>15</sup> n/cm<sup>2</sup> do not cause significant light output loss in 5 mm thick LYSO and BaF<sub>2</sub> plates, promising a fast and robust detector in a severe radiation environment, such as the HL-LHC.
- Progresses in both the F/S ratio and the LRU are observed in large size BaF<sub>2</sub>:Y crystals.
  R&D will continue to develop large size yttrium doped BaF<sub>2</sub> crystals for Mu2e-II.
  Attention should also be paid to develop photodetector with VUV response: Solar blind LAPPD, VUV sensitive Si or diamond based photodetectors.

Acknowledgements: DOE HEP Award DE-SC0011925



### Hamamatsu S13371 VUV SiPM







# **Diamond Photodetector**

E. Monroy, F. Omnes and F. Calle,"Wide-bandgap semiconductor ultraviolet photodetectors,IOPscience 2003 Semicond. Sci. Technol. 18 R33



E. Pace and A. De Sio, "Innovative diamond photo-detectors for UV astrophysics", Mem. S.A.It. Suppl. Vol. 14, 84 (2010)



**Figure 6.** Quantum efficiency of diamond photoconductors at different temperatures and Arrhenius plot of the peak value (inset). (From [Sal00].)

# Fig.4. External quantum efficiency extended to visible and near infrared wavelength regions. The