

Fast Crystal Scintillators for GHz Hard X-Ray Imaging

Chen Hu, Liyuan Zhang, Ren-Yuan Zhu,
California Institute of Technology
Aiping Chen, Zhehui Wang,
Los Alamos National Laboratory
Lei Ying and Zongfu Yu
University of Wisconsin

September 20, 2017

GHz Hard X-Ray Imaging

High-Energy and Ultrafast X-Ray Imaging Technologies and Applications

Organizers: Peter Denes, Sol Gruner, Michael Stevens & Zhehui (Jeff) Wang¹ (Location/Time: Santa Fe, NM, USA /Aug 2-3, 2016)

The goals of this workshop are to gather the leading experts in the related fields, to prioritize tasks for ultrafast hard X-ray imaging detector technology development and applications in the next 5 to 10 years, see Table 1, and to establish the foundations for near-term R&D collaborations.

Table I. High-energy photon imagers for MaRIE XFEL

Performance	Type I imager	Type II imager	
X-ray energy	30 keV	42-126 keV	
Frame-rate/inter-frame time	0.5 GHz/2 ns	3 GHz / 300 ps	
Number of frames	10	10 - 30	
X-ray detection efficiency	above 50%	above 80%	
Pixel size/pitch	≤ 300 μm	< 300 μm	
Dynamic range	10 ³ X-ray photons	≥ 10 ⁴ X-ray photons	
Pixel format	64 x 64 (scalable to 1 Mpix)	1 Mpix	

2 ns and 300 ps inter-frame time requires very fast sensor

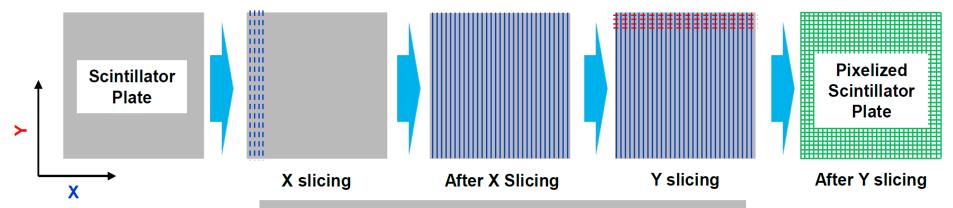
Why Crystal Scintillator?

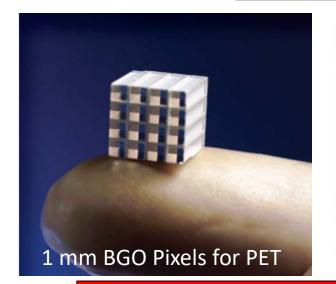
- Detection efficiency for hard X-ray requires bulk detector.
- Scintillation light provides fast signal.
- Pixelized crystal detector is a standard for medical industry.
- A detector concept:
 - Pixelized fast scintillator screen;
 - Pixelized fast photodetector;
 - Fast electronics readout.
- Challenges:

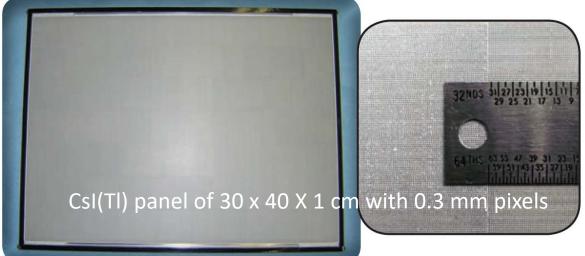
Ultra-fast crystals, photodetectors and readout.

X-ray photons

Detectors


Fast Scintillator


Pixelized Crystal Detectors



Crystal panels of 300 μ pitch may be fabricated by classical mechanical processing

A Schematic showing pixelized scintillator plate processing

Laser slicing, micropore or not pixelized provide better coverage

Candidate Scintillators for Marie

	LYSO (:Ce)	YSO:Ce	ZnO:Ga	BaF ₂	BaF ₂ :Y	YAP:Ce	YAP:Yb	YAG:Yb	LuAG:Ce	LaBr ₃ (:Ce)
Density (g/cm³)	7.4	4.44	5.67	4.89	4.89	5.35	5.35	4.56	6.76	5.29
Melting points (°C)	2050	2070	1975	1280	1280	1870	1870	1940	2060	783
X ₀ (cm)	1.14	3.10	2.51	2.03	2.03	2.77	2.77	3.53	1.45	1.88
R _M (cm)	2.07	2.93	2.28	3.1	3.1	2.4	2.4	2.76	2.15	2.85
λ _ι (cm)	20.9	27.8	22.2	30.7	30.7	22.4	22.4	25.2	20.6	30.4
Z _{eff}	64.8	33.3	27.7	51.6	51.6	31.9	31.9	30	60.3	45.6
dE/dX (MeV/cm)	9.55	6.57	8.42	6.52	6.52	8.05	8.05	7.01	9.22	6.90
λ _{peak} a (nm)	420	420	389	300 220	300 220	370	350	350	520	360
Refractive Index ^b	1.82	1.78	2.1	1.50	1.50	1.96	1.96	1.87	1.84	1.9
Normalized Light Yield ^{a,c}	100	80	6.6e	42 4.8	1.7 4.8	9 32	0.19 ^e	0.36e	35 ^f 48 ^f	153
Total Light yield (ph/MeV)	30,000	24,000	2,000e	13,000	2,000	12,000	57 ^e	110 ^e	25,000 ^f	46,000
Decay time ^a (ns)	40	75	<1	600 0.6	600 0.6	191 25	1.5	4	981 ^f 64 ^f	20
Light Yield in 1st ns (photons/MeV)	740	318	610 ^e	1200	1200	391	28 ^e	24 ^e	240	2,200
40 keV Att. Length (1/e, mm)	0.185	0.334	0.407	0.106	0.106	0.314	0.314	0.439	0.251	0.131

^[1] Spurrier, et al., IEEE T. Nucl. Sci. 2008,55 (3): 1178-1182.

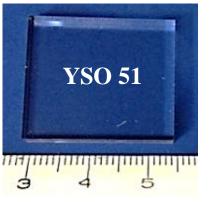
a. Top line: slow component, bottom line: fast component;

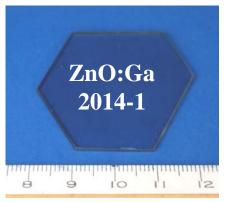
b. At the wavelength of the emission maximum;

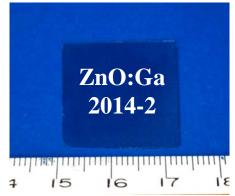
c. Excited by Gamma rays;

d. For 0.4 at% Ca co-doping;

e. Excited by Alpha particles.


f. Ceramic with 0.3 Mg at% co-doping

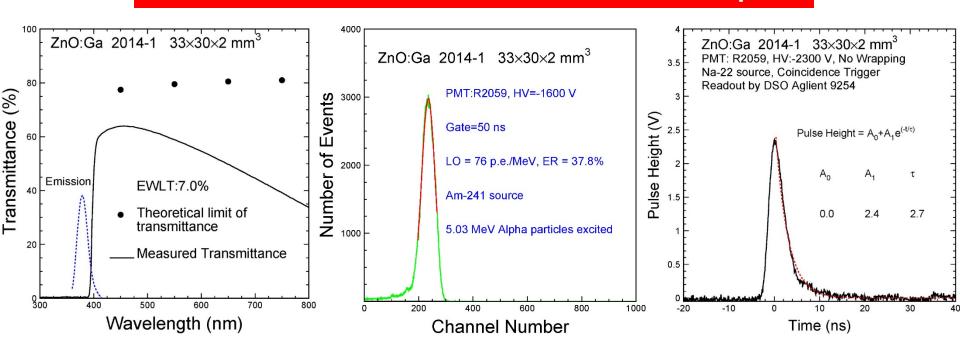



LYSO and ZnO:Ga Samples

Crystal	Vendor	ID	Dimension (mm³)
LYSO:Ce	SIC	150210-1	19x19×2
YSO:Ce	SIC	51	25×25×5
ZnO:Ga	FJIRSM	2014-1	33×30×2
ZnO:Ga	FJIRSM	2014-2	22×22×0.3

Experiments

 Properties measured at room temperature : PL & Decay, Transmittance, PHS, LO & Decay kinetics

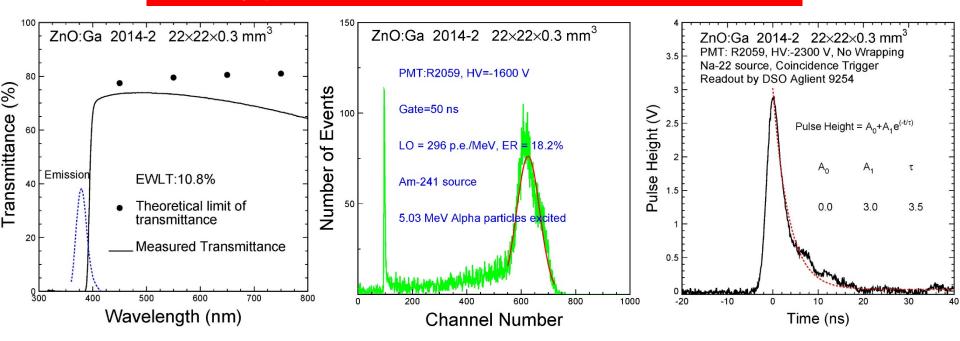


FJIRSM ZnO:Ga-2014-1

Very short decay time

× Low EWLT and LO due to severe self absorption

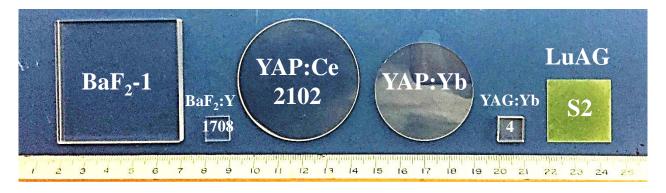
ID	Dimension	EWLT (%)	ER (%)	50 ns LO (p.e./MeV)	Primary Decay Time (ns)
FJIRSM ZnO:Ga-2014-1	33×30×2	7.0	37.8	76 (α)	2.7



FJIRSM ZnO:Ga-2014-2

× Reduced self absorption due to 0.3 mm thickness

× May pursue QD, NP or thin film based solution



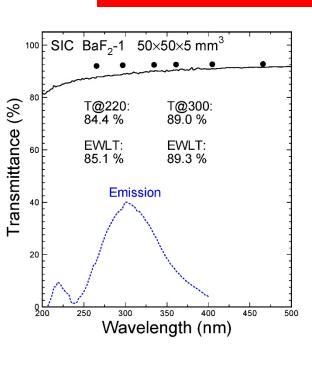
ID	Dimension	EWLT (%)	ER (%)	50 ns LO (p.e./MeV)	Primary Decay Time (ns)
FJIRSM ZnO:Ga-2014-2	22×22×0.3	10.8	18.2	296 (α)	3.5

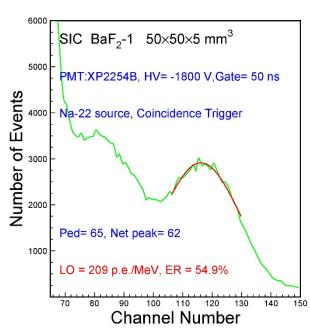
BaF₂ and Other Samples

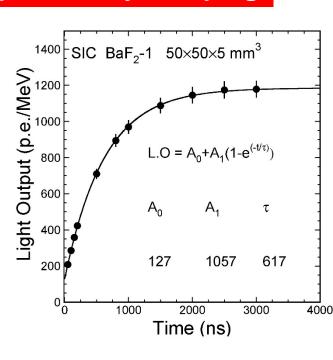
Crystal	Crystal Vendor		Dimension (mm³)
BaF ₂	SIC	1	50×50×5
BaF ₂ :Y	BGRI	1708	10×10×2
YAP:Ce	Dongjun	2102	Ф50×2
YAP:Yb	Dongjun	2-2	Ф40×2
YAG:Yb	Dongjun	4	10×10×5
LuAG:Ce	SIC	S2	25×25×0.4

Experiments

Properties measured at room temperature : PL & Decay, Transmittance,
 PHS, LO & Decay kinetics

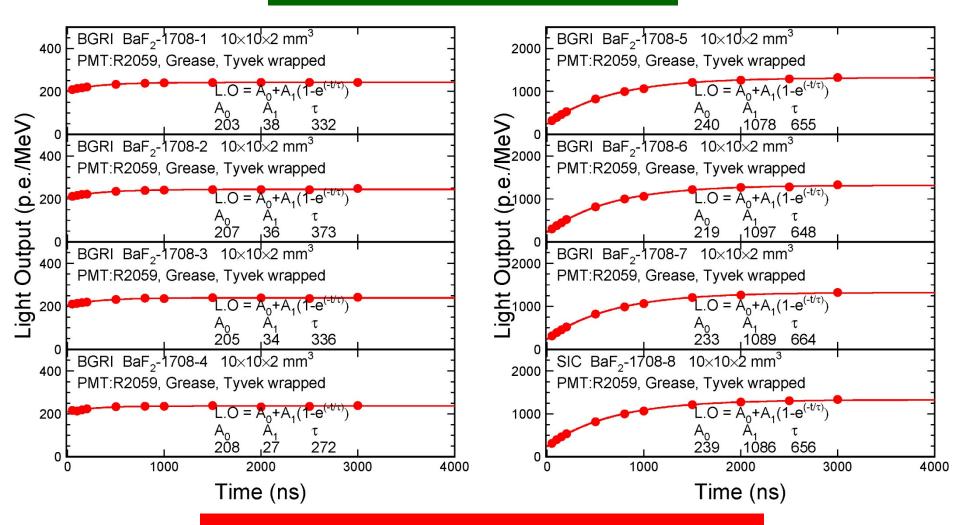



SIC BaF₂-1



✓ The highest LY in 1st ns among all non-hygroscopic scintillators

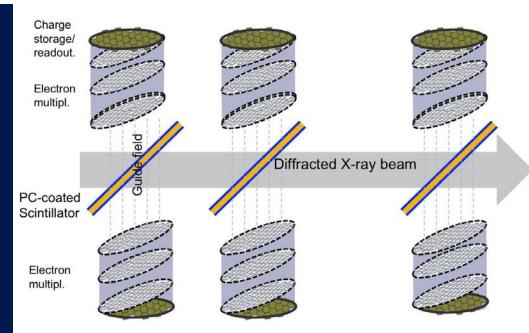
× ~600 ns slow component may be suppressed by Y doping


ID	Dimension	EWLT (%)	ER (%)	50 ns LO (p.e./MeV)	Primary Decay Time (ns)
SIC BaF ₂ -1	50×50×5	85.1	54.9	209	0.6

BGRI Y Doped/Undoped BaF₂

F/S ratio increased from 0.21 to 6 .2

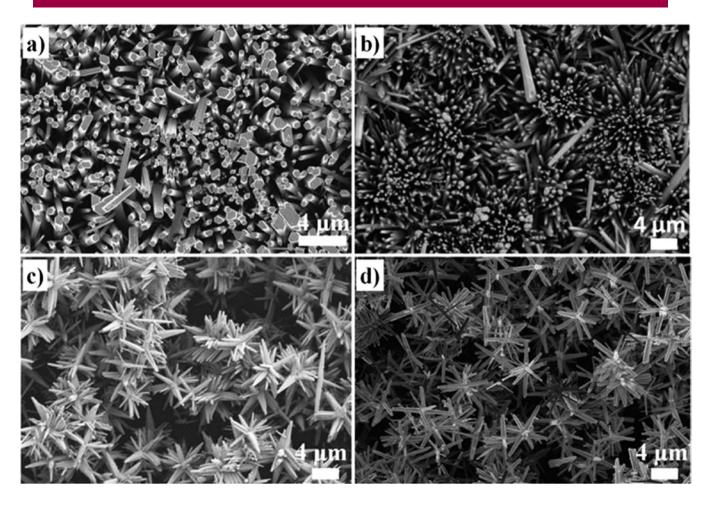
Will be discussed in details in NSS2017 at Atlanta


Use Thin Layer Scintillators

Proc. of SPIE Vol. 9504 95040N

A multilayer high QE photocathode coated thin fast scintillators concept was proposed for GHz hard X-ray imaging:

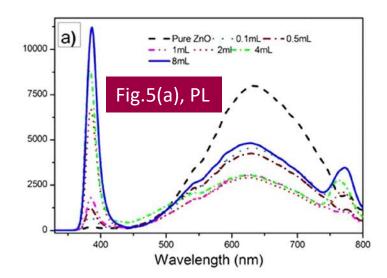
- Spatial resolution determined layer thickness,
- Overall efficiency defined layer number,
- Maximized conversion of scintillation photon to p.e.,
- Magnetic field extraction of p.e. and image preserving,
- Off-beam p.e. multiplication,
- On-board charge storages.

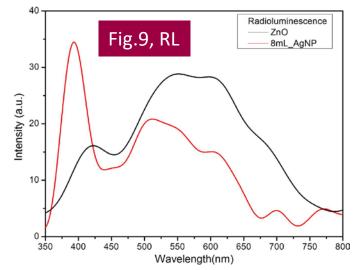

Figure 6. A multi-layer detector architecture for efficient and fast imaging of diffracted X rays. A guide magnetic field perpendicular to the X-ray direction guide the photoelectrons to amplification and storage. The magnetic field also preserves the image contrast due to X-ray absorption at the scintillator location.

Ag/Au-ZnO Core-Shell Nano Particles

Nature Scientific Reports | 5:14004 | DOI: 10.1038/srep14004

Figure 2. SEM images for ZnO samples without nanoparticles (a), with 2 mL_AgNP (b), 8 mL_AgNP (c), and 8 mL_AuNP (d) illustrating the change in shape of the particles. The particles in the lower two micrographs are referred to as "star" or "thistle" shaped in the text.




Enhanced UV Emission in Ag/Au-ZnO

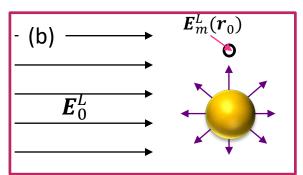
Nature Scientific Reports | 5:14004 | DOI: 10.1038/srep14004

- Enhancement of ZnO near-bandedge (UV) emission centered at 385 nm was reported in PL and RL of Ag/Au-ZnO core shell nanoparticles.
- The enhanced luminescence and the decreased free exciton lifetime suggest a plasmon-coupled-emission mechanism.
- This suggests that plasmon-coupled luminescence can be employed for the development of improved scintillators.

Purcell effect for enhancing ZnO luminescence

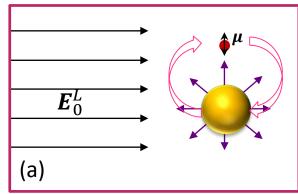
(Theoretical framework)
Hybrid system as experimental fram

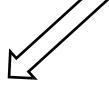
Total field:

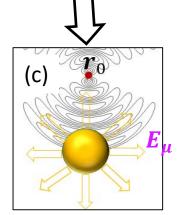

$$\frac{\left\langle \widehat{\boldsymbol{E}}_{\boldsymbol{m}}(\boldsymbol{r}) \right\rangle = \boldsymbol{E}_{m}^{L}(\boldsymbol{r}) + \frac{\omega^{2}}{\epsilon_{0}c^{2}} \overrightarrow{\boldsymbol{G}}(\boldsymbol{r}, \boldsymbol{r}_{0}; \omega) \cdot \boldsymbol{\mu} \langle \boldsymbol{S} \rangle}{\text{(b)}}$$

Dipole moment: $\langle \hat{S} \rangle = \frac{-\Omega[2\Delta - i\gamma_m]}{4\Delta^2 + 2|\Omega|^2 + v_m^2}$

Rabi frequency: $\Omega = 2\boldsymbol{\mu} \cdot \boldsymbol{E}_m^L(\boldsymbol{r}_0)$


 Δ is detuning

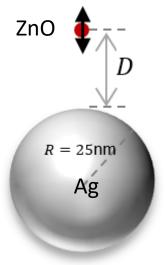

 $\overrightarrow{\boldsymbol{G}}(\boldsymbol{r},\boldsymbol{r}_0;\omega)$ is Dyadic Green's function


No dipole: Mie scattering theory

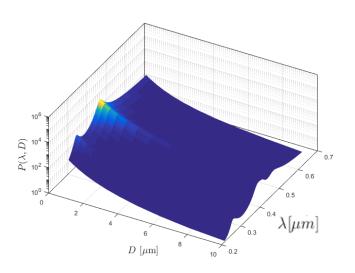
In numerical calculation, the dyadic Green's function is the kernel.

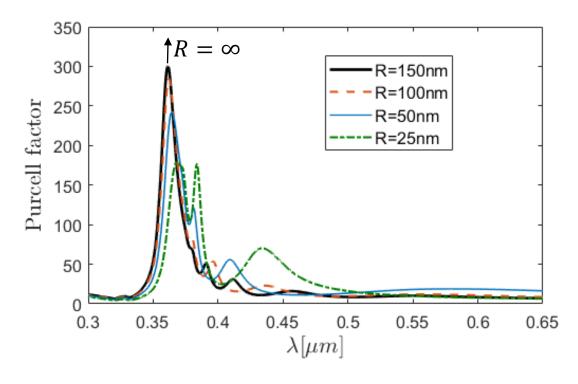
NOTE: dipole is considered as a point in theory. In experiment, ZnO is the dipole.

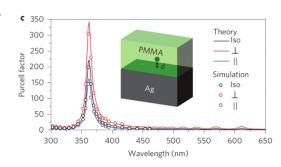
Dipole vs. Nanostructure: dyadic Green's function


$$\gamma_m = 2\operatorname{Im}[\boldsymbol{\mu} \cdot \boldsymbol{E}_{\boldsymbol{\mu}}(\boldsymbol{r}_0)] = 2\operatorname{Im}[\boldsymbol{\mu} \cdot \overrightarrow{\boldsymbol{G}}(\boldsymbol{r}, \boldsymbol{r}_0; \omega) \cdot \boldsymbol{\mu}]$$

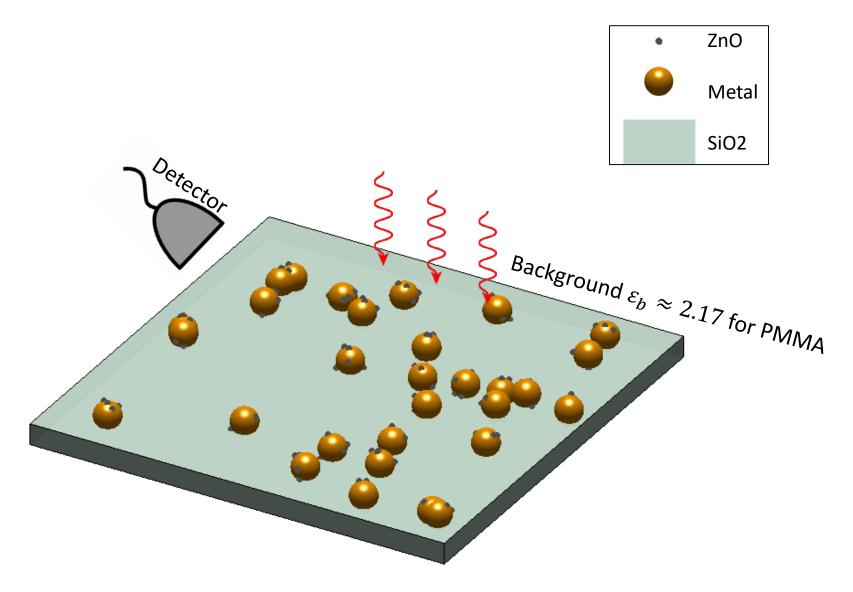
 γ_m/γ_0 is Purcell enhancement factor




Purcell Factor for Ag Particles



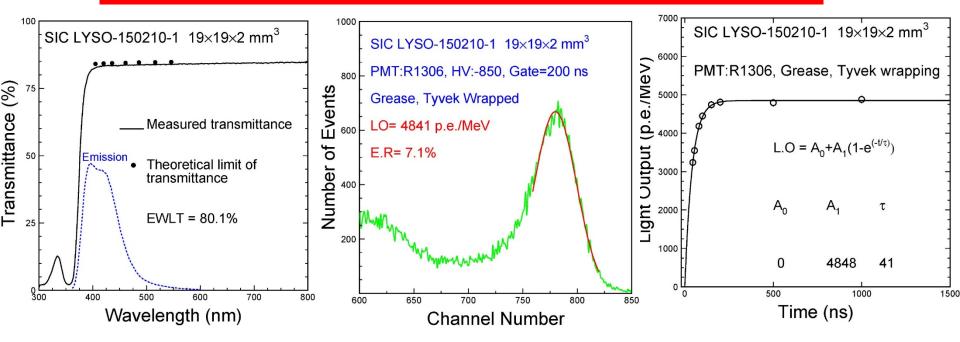
Background PMMA $\varepsilon_h = 2.17$


 $R=\infty$ is equivalent to a infinite layer. Our simulation is greatly agree with experiments (red circles) as right figure. Agreement includes the peak value, wavelength and bandwidth.

Experimental Proposal

Summary

- ☐ GHz hard X-ray imaging for the proposed Marie project presents an unprecedented challenge to the speed and radiation hardness of inorganic scintillators.
- □ BaF₂ crystals provide sufficient fast light with sub-ns decay time and excellent radiation hardness beyond 100 Mrad and 1 x 10¹⁵ h/cm². With its slow component effectively suppressed by yttrium doping Y:BaF₂ promises a fast and robust front imager.
- □ Bulk ZnO:Ga crystals suffer from serious self-absorption. Enhanced UV emission observed in Ag/Au ZnO core-shell nano particles hints a thin film based approach.
- □ Our plan is to investigate along both lines: Y:BaF₂ crystals, and ZnO QD/NP based thin film for the Marie project with a close collaboration between the NP, HEP and material science community.

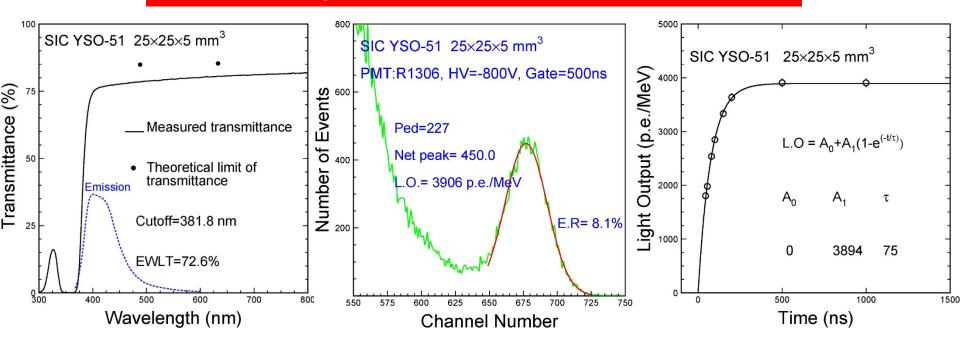


SIC LYSO:Ce-150210-1 (in LANL)

High LO, good transmittance and ER, short decay time

× Decay time too long for X-ray frame rate of a few ns

ID	Dimension	EWLT (%)	ER (%)	200 ns LO (p.e./MeV)	Primary Decay Time (ns)
SIC LYSO- 150210-1	19×19×2	80.1	7.1	4841	41

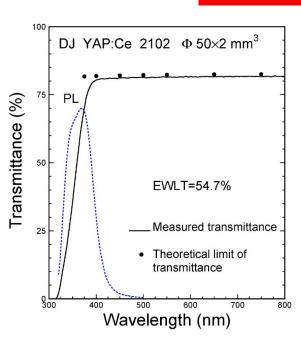


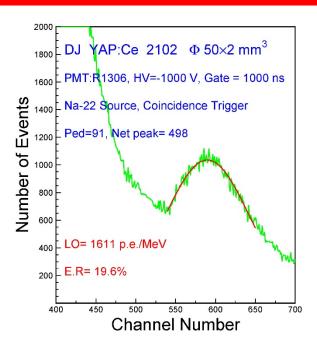
SIC YSO:Ce-51 (in LANL)

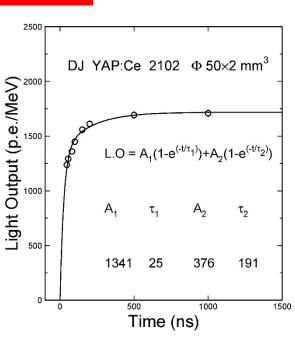
✓ Good LO, transmittance, ER, and short decay time

× All these performance are inferior to LYSO:Ce

ID	Dimension	EWLT (%)	ER (%)	500 ns LO (p.e./MeV)	Primary Decay Time (ns)
SIC YSO-51	25×25×5	72.6	8.1	3906	75



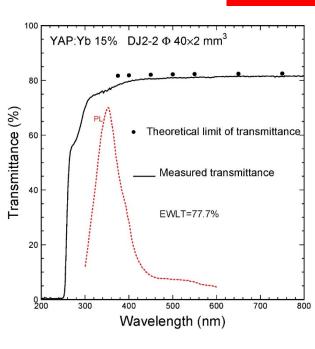

DJ YAP:Ce-2102

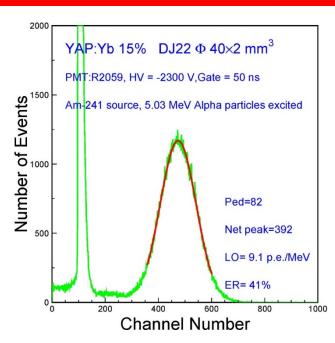


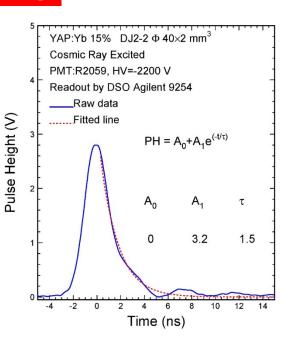
Adequate LO and ER

× Self absorption and slow component

ID	Dimension	EWLT (%)	ER (%)	200 ns LO (p.e./MeV)	Primary Decay Time (ns)
DJ YAP:Ce- 2102	Ф50×2	54.7	19.6	1611	25

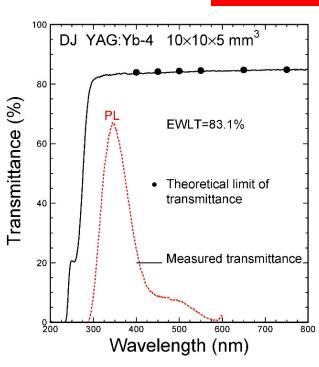


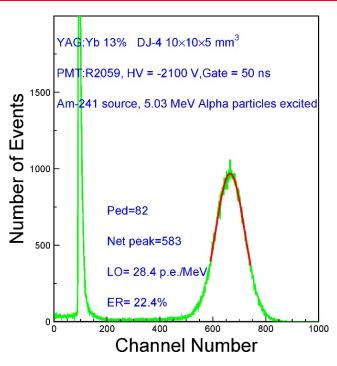

DJ YAP:Yb-2-2



× Low LO due to thermal quenching

ID	Dimension	EWLT (%)	ER (%)	50 ns LO (p.e./MeV)	Primary Decay Time (ns)
DJ YAP:Yb-2-2	Ф40×2	77.7	41	9.1 (α)	1.5

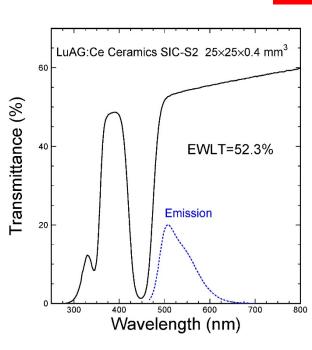


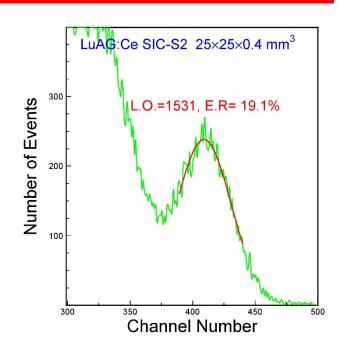

DJ YAG:Yb-4

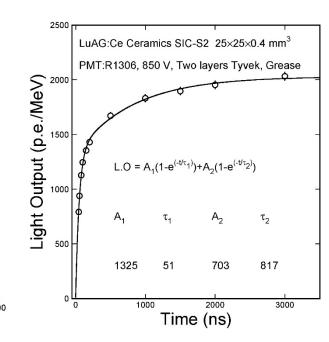
✓ Very short decay time and good transmittance

× Low LO due to thermal quenching

ID	Dimension	EWLT (%)	ER (%)	50 ns LO (p.e./MeV)	Primary Decay Time (ns)
DJ YAG:Yb-4	10×10×5	83.1	22.4	28.4 (α)	3.6

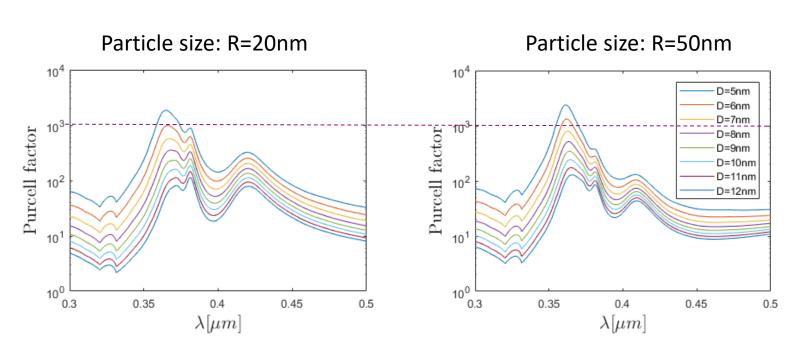



SIC LuAG-S2 Ceramics



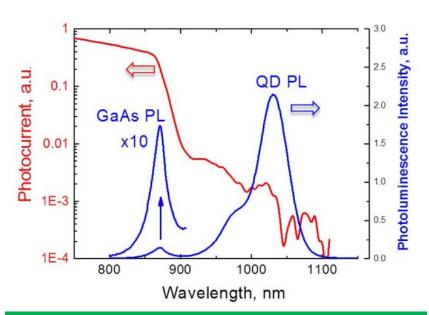
✓ Good LO and ER, and short decay time

× ~ 1 μs slow component



ID	Dimension	EWLT (%)	ER (%)	200 ns LO (p.e./MeV)	Primary Decay Time (ns)
SIC LuAG-S2	25×25×0.4	52.3	19.1	1531	51

Purcell Factor for Ag Particles


- The Purcell factor is sensitive to the distance between ZnO and metallic nanoparticle.
- The bandwidth of Purcell factor is stable for variety of distance D.

InAs/GaAs QD based Crystal

In recent study^[1], S. Oktyabrsky, et al. report an <u>ultrafast</u>, no <u>self-absorption</u>, <u>high-efficient</u> room-temperature <u>semiconductor scintillator</u> based on InAs QDs embedded in a GaAs matrix.

Room temperature photocurrent spectra overlapped with PL spectra of the same QD structure with reduced wetting layer placed in a p-n junction.

Comparison of Some Fast Inorganic Scintillators (source: Scintillator.lbl.gov)
With Projected Performance of InAs/GaAs Qd Scintillator

Parameter	BaF ₂	LYSO	GaAs/InAs QDs
Density (g/cm ³)	4.89	7.1	5.32
Radiation length, cm	2.03	1.1	2.3
Decay constant, ns	0.8 ns	40	1
Peak emission, nm	195; 220	428	1050
Photon Yield	1,400	34,000	240,000
(photons/MeV)			
Time between first photons, for 1MeV	0.57ps	1.2 ps	2 fs
Poisson-limited energy resolution at 1MeV (keV) *	62	13	4.8
Radiation hardness, Gy	$10^4 - 10^5$	$10^4 - 10^5$	$> 10^4$
Coupling efficiency	<50%	<50%	~100%

^{*}Assuming collection efficiency = 1

□ Due to inhomogeneous broadening of very narrow ground-level luminescence peaks, the self-absorption in such a medium is very low, <1 cm⁻¹ for 10¹⁵ QDs/cm³ [1]

Ref.: [1] S. Oktyabrsky, et al., IEEE Trans. Nucl. Sci. 63, 656 (2016).