

Applications of Very Fast Inorganic Crystal Scintillators for Future HEP Experiments **Ren-Yuan Zhu** California Institute of Technology September 18, 2017

Presentation in the SCINT 2017 Conference at Chamonix, France

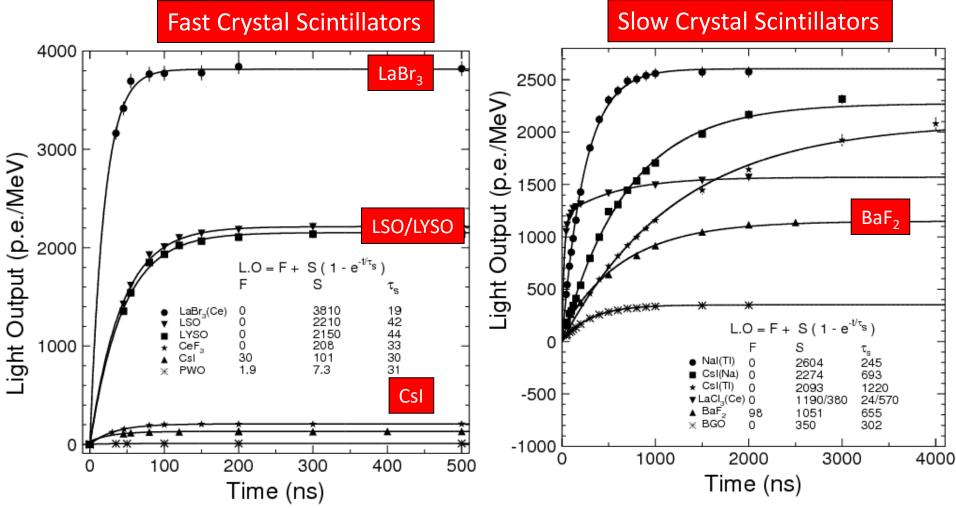
Fast & Radiation Hard Scintillators

- Supported by the DOE ADR program we are developing fast and radiation hard scintillators to face the challenge for future HEP experiments at the energy and intensity frontiers.
- LYSO:Ce, BaF₂ and LuAG:Ce will survive the radiation environment expected at HL-LHC with 3000 fb⁻¹. LYSO is proposed for a precision timing layer for CMS upgrade:
 - Absorbed dose: up to 100 Mrad,
 - Charged hadron fluence: up to 6×10¹⁴ p/cm²,
 - Fast neutron fluence: up to 3×10¹⁵ n/cm².
- Ultra-fast scintillators with excellent radiation hardness is also needed to face the challenge of unprecedented event rate expected at future HEP experiments at the intensity frontier, such as Mu2e-II, and the GHz X-ray imaging for the proposed Marie project at Los Alamos. Y:BaF₂ with sub-ns decay time and suppressed slow scintillation component is a leading candidate for both applications.

Bright & Fast Scintillators: LYSO & BaF₂

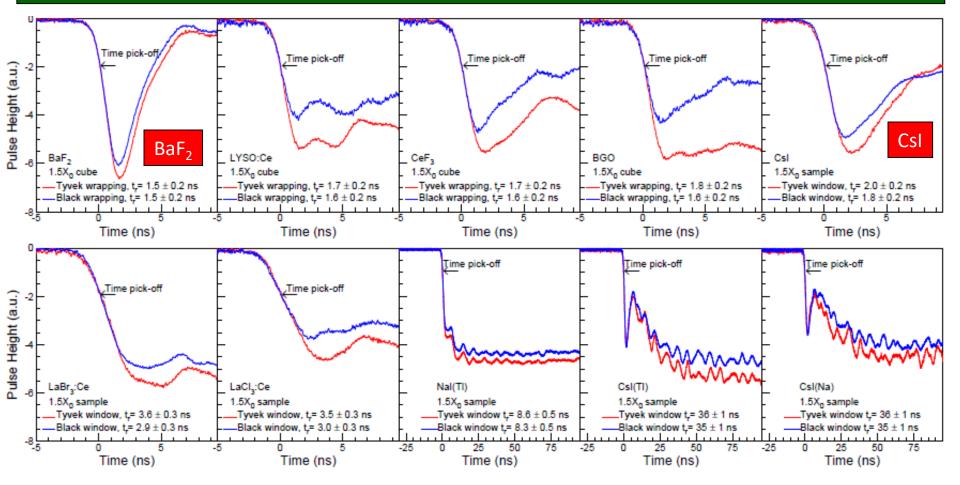
5 1 V 1. 01								10 10 10 10 10 10 10 10 10 10 10 10 10 1
Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	26	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	4.7	36 4.1	21	85	0.3 0.1	?
d(LY)/dT ^ь (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES-III	KTeV S.BELLE Mu2e-I	(GEM) TAPS Mu2e-II	L3 BELLE HHCAL?	COMET & CMS (Mu2e & SperB)	CMS ALICE PANDA	A4 g-2 HHCAL
a stressly of sur	••• •		- I / f			والمتعاد والمتعاد و		

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.


September 18, 2017

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively



Fast Signals: 1.5 X₀ Samples

Hamamatsu R2059 PMT (2500 V)/Agilent MSO9254A (2.5 GHz) DSO with 1.3/0.14 ns rise time

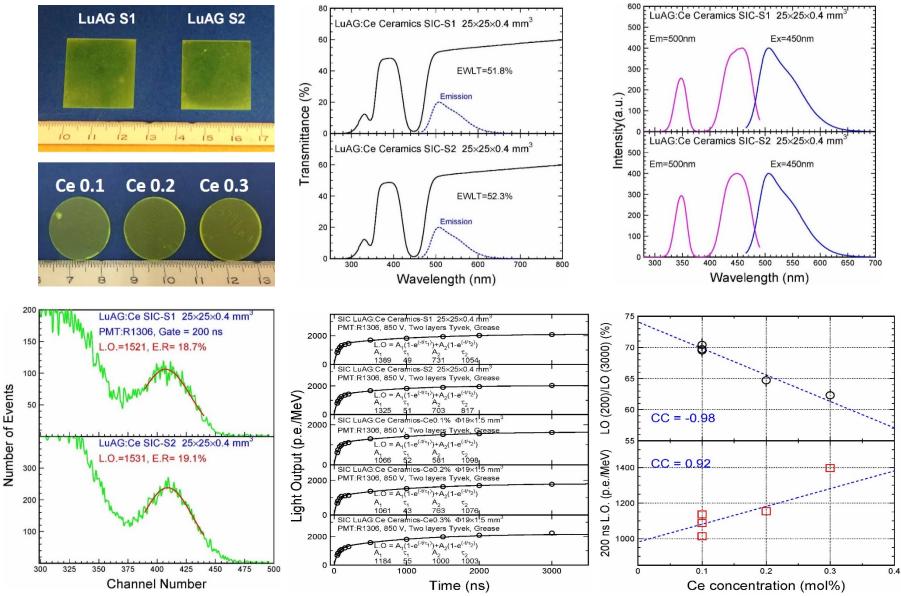
The 3 ns width of BaF₂ pulse may be further reduced by faster photodetector LYSO, LaBr₃ & CeBr₃ have tail, which would cause pile-up for GHz readout

September 18, 2017

Fast Inorganic Scintillators

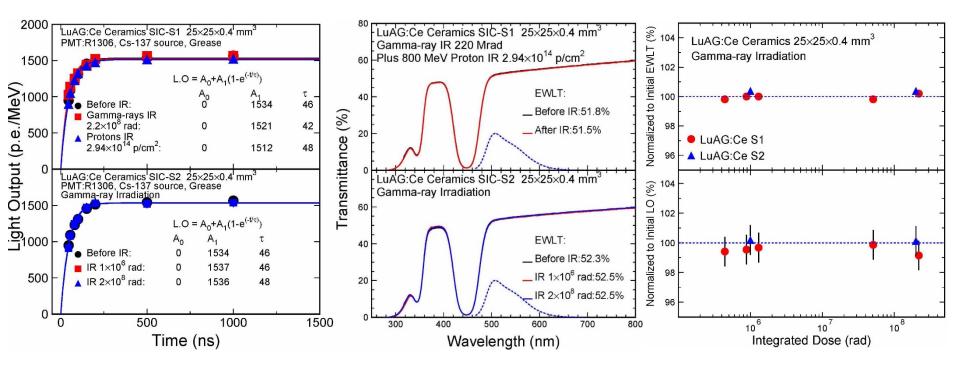
	LYSO:Ce	LSO:Ce, Ca ^[1]	LuAG:Ce	LuAG:Pr ^[3]	GGAG:Ce ^[4,5]	Csl	BaF ₂ ^[6]	BaF ₂ :Y	CeBr ₃	LaBr ₃ :Ce ^[7]
Density (g/cm ³)	7.4	7.4	6.76	6.76	6.5	4.51	4.89	4.89	5.23	5.29
Melting points (°C)	2050	2050	2060	2060	1850 ^d	621	1280	1280	722	783
X ₀ (cm)	1.14	1.14	1.45	1.45	1.63	1.86	2.03	2.03	1.96	1.88
R _M (cm)	2.07	2.07	2.15	2.15	2.20	3.57	3.1	3.1	2.97	2.85
λ _ι (cm)	20.9	20.9	20.6	20.6	21.5	39.3	30.7	30.7	31.5	30.4
Z _{eff}	64.8	64.8	60.3	60.3	51.8	54.0	51.6	51.6	45.6	45.6
dE/dX (MeV/cm)	9.55	9.55	9.22	9.22	8.96	5.56	6.52	6.52	6.65	6.90
λ _{peak} ^a (nm)	420	420	520	310	540	310	300 220	300 220	371	360
PL Emission Peak (nm)	402	402	500	308	540	310	300 220	300 220	350	360
PL Excitation Peak (nm)	358	358	450	275	445	256	<200	<200	330	295
Absorption Edge (nm)	170	170	160	160	190	200	140	140	n.r.	220
Refractive Index ^b	1.82	1.82	1.84	1.84	1.92	1.95	1.50	1.50	1.9	1.9
Normalized Light Yield ^{a,c}	100	116 ^e	35 ^f 48 ^f	44 41	40 75	4.2 1.3	42 5.0	1.7 5.0	99	153
Total Light yield (ph/MeV)	30,000	34,800 ^e	25,000 ^f	25,800	34,700	1,700	13,000	2,100	30,000	46,000
Decay time ^a (ns)	40	31 e	981 ^f 64 ^f	1208 26	319 101	30 6	600 <mark>0.6</mark>	600 <mark>0.6</mark>	17	20
Light Yield in 1 st ns (photons/MeV)	740	950	240	520	260	100	1200	1200	1,700	2,200
Issues					neutron x-section	Slightly hygroscop ic	Slow compon ent	DUV PD		oscopic
September 18, 2017 Presentation by Ren-Yuan Zhu, Caltech, in the SCINT 2017 Conference at Chamonix, France 6										

Fast Inorganic Scintillators (II)

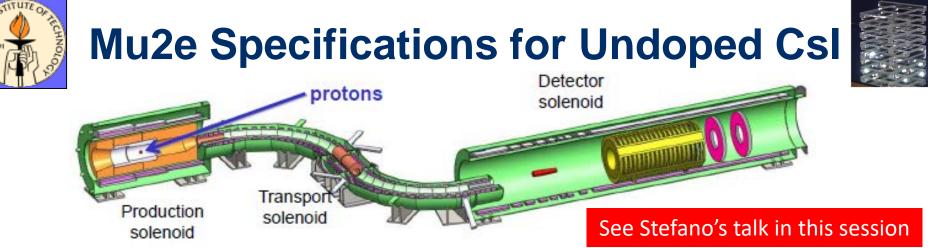


a. Top line: slow component, bottom	[1] Spurrier, et al., <i>IEEE T. Nucl. Sci.</i> 2008,55 (3):		
line: fast component;	1178-1182		
b. At the wavelength of the emission	[2] Liu, et al., Adv. Opt. Mater. 2016, 4(5): 731–739		
maximum;	[3] Hu, et al., <i>Phys. Rev. Applied</i> 2016, 6: 064026		
	[4] Lucchini, et al., <i>NIM A</i> 2016, 816: 176-183		
c. Excited by Gamma rays;	[5] Meng, et al., <i>Mat. Sci. Eng. B-Solid</i> 2015, 193:		
d. For Gd ₃ Ga ₃ Al ₂ O ₁₂ :Ce	20-26		
e. For 0.4 at% Ca co-doping	[6] Diehl, et al., <i>J. Phys. Conf. Ser</i> 2015, 587:		
f. Ceramic with 0.3 Mg at% co-doping	012044		
	[7] Pustovarov, et al., Tech. Phys. Lett. 2012, 784-		
	788		

LuAG:Ce Ceramic Samples


September 18, 2017

Excellent Radiation Hardness



No damage observed in both transmittance and light output after 220 Mrad ionization dose and 3×10^{14} p/cm² of 800 MeV

Very promising for a scintillating ceramics based calorimeter Will be discussed in details in NSS2017 at Atlanta

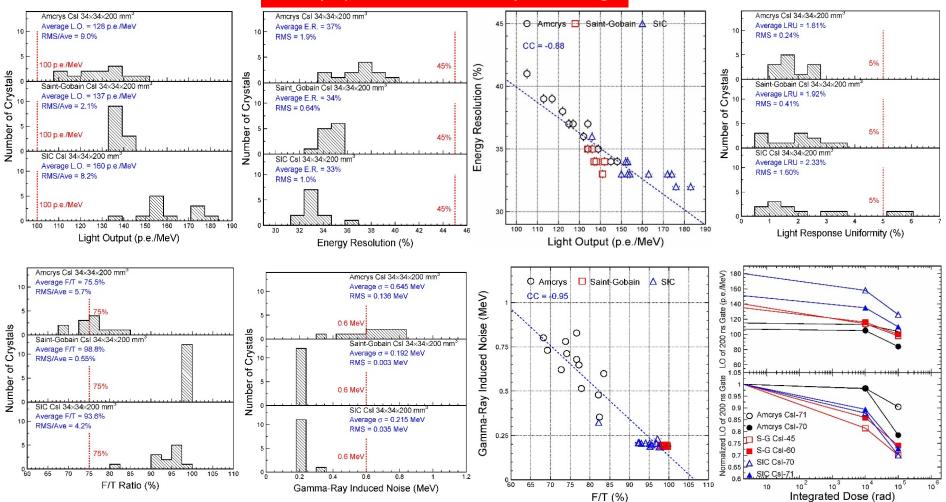
September 18, 2017

- **Crystal lateral dimension:** $\pm 100 \mu$, length: $\pm 100 \mu$.
- ❑ Scintillation properties at seven points along the crystal wrapped by two layers of Tyvek paper of 150 µm for alternative end coupled to a bi-alkali PMT with an air gap. Light output and FWHM resolution are the average of seven points with 200 ns integration time. The light response uniformity is the rms of seven points. F/T is measured at the point of 2.5 cm to the PMT.
 - Light output (LO): > 100 p.e./MeV with 200 ns gate, will be compared to reference for cross-calibration;
 - □ FWHM Energy resolution: < 45% for Na-22 peak;
 - Light response uniformity (LRU, rms of seven points): < 5%;</p>
 - □ Fast (200 ns)/Total (3000 ns) Ratio: > 75%.
- Radiation related spec::
 - Normalized LO after 10/100 krad: > 85/60%;
 - □ Radiation Induced noise @ 1.8 rad/h: < 0.6 MeV.

September 18, 2017

Mu2e Preproduction Csl

A total of 72 crystals from Amcrys, Saint-Gobain and SICCAS has been measured at Caltech and LNF


Amerys C0013	S-G C0045	SIC C0037	
Amerys C0015	S-G C0046	SIC C0038	
Amerys C0016	S-G C0048	SIC C0039	
Amerys C0019	S-G C0049	SIC C0040	
Amerys C0023	S-G C0051	SIC C0041	
Amerys C0025	S-G C0057	SIC C0042	
Amerys C0026	S-G C0058	SIC C0043	
Amerys C0027	S-G C0060	SIC C0068	
Amerys C0030	S-G C0062	SIC C0070	
Amerys C0032	S-G C0063	SIC C0071	
Amerys C0034	S-G C0065	SIC C0072	
Amerys C0036	S-G C0066	SIC C0073	

September 18, 2017

See paper P1-21 Tuesday morning

Most preproduction crystals satisfy specifications, except a few crystals from SICCAS fail the LRU spec and about half Amcrys crystals fail the F/T ratio and RIN

September 18, 2017

HSTITUTE OF

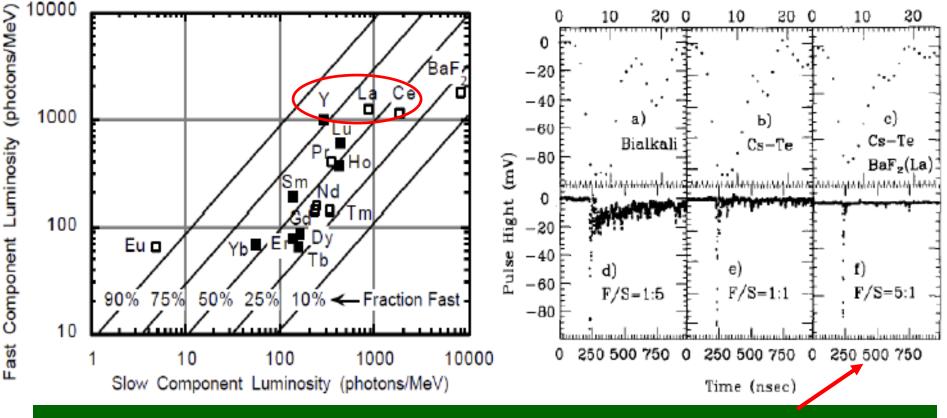
POONT CHURCHNOLOGI

Fast and Slow Light from BaF₂

A radiation level exceeding 100 krad is expected at the proposed Mu2e-II, so BaF₂ is being considered.

The amount of light in the fast component of BaF₂ at
220 nm with sub-ns decay time is similar to CsI.

Spectroscopic selection of fast component may be realized by solar blind photocathode and/or selective doping.



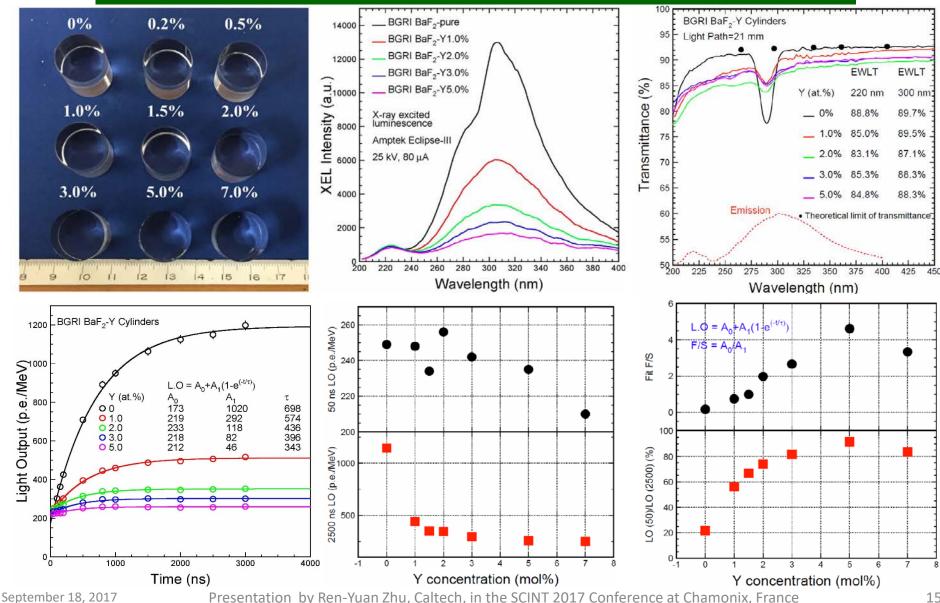
Slow Suppression: Doping & Readout

Slow component may be suppressed by RE doping: Y, La and Ce

B.P. SOBOLEV et al., "SUPPRESSION OF BaF2 SLOW COMPONENT OF X-RAY LUMINESCENCE IN NON-STOICHIOMETRIC Ba0.9R0.1F2 CRYSTALS (R=RARE EARTH ELEMENT)," Proceedings of The Material Research Society: Scintillator and Phosphor Materials, pp. 277-283, 1994.

Solar-blind cathode (Cs-Te) + La doping achieved F/S = 5/1

See J.F. Chen, paper P3-28 Thursday morning

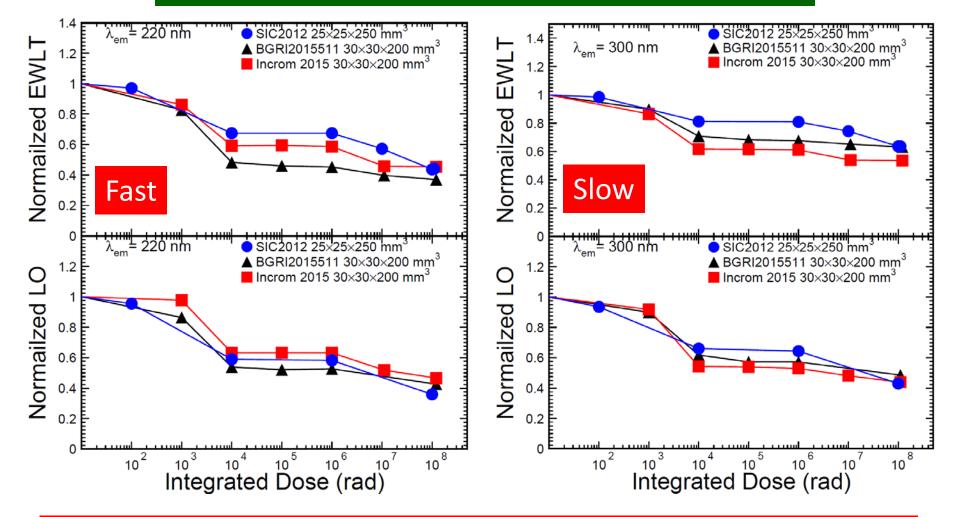

September 18, 2017

Yttrium Doped BaF₂ for Mu2e-II

F/S ratio from 1/5 to 5/1: very effective slow suppression

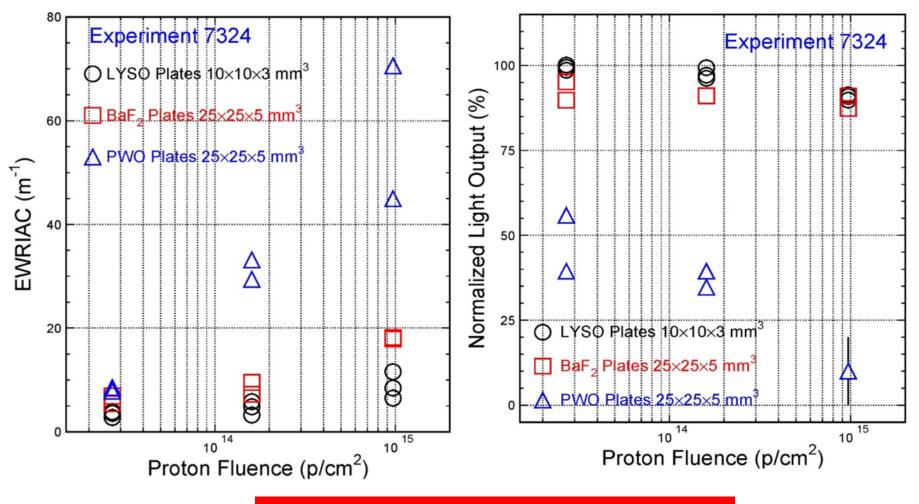
BGRI/Incrom/SIC BaF₂ Samples

ID	Vendor	Dimension (mm ³)	Polishing
SIC 1-20	SICCAS	30x30x250	Six faces
BGRI-2015 D, E, 511	BGRI	30x30x200	Six faces
Russo 2, 3	Incrom	30x30x200	Six faces


September 18, 2017

BaF₂: Normalized EWLT and LO

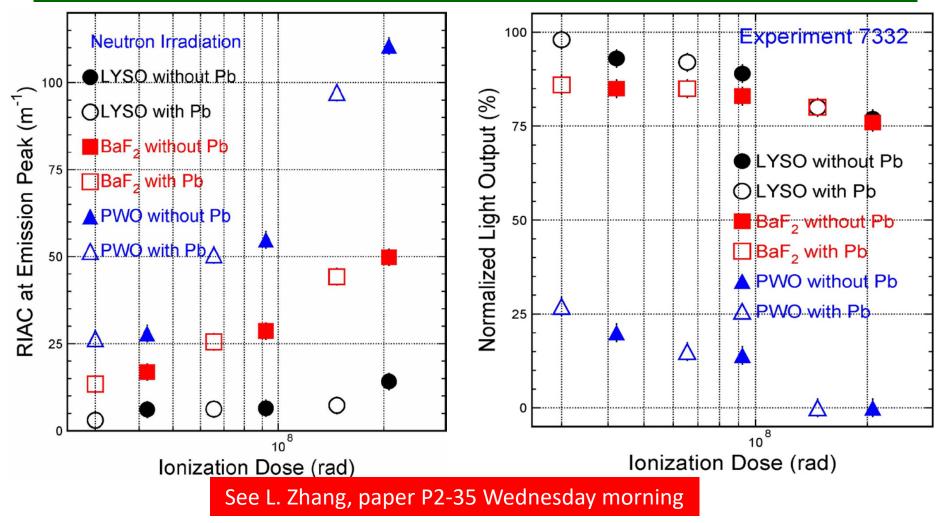
Consistent damage in crystals from three vendors


Remaining light output after 120 Mrad: 40%/45% for the fast/slow component

September 18, 2017

RIAC & LO Vs. Proton Fluence

Excellent radiation hardness of LYSO and BaF_2 up to 10^{15} p/cm²


See L. Zhang, paper P2-34 Wednesday morning

September 18, 2017

RIAC & LO Vs. Ionization Dose

Excellent radiation hardness of LYSO and BaF₂ up to 2 x 10¹⁵ n/cm² No neutron specific damage in LYSO, BaF₂ & PWO

September 18, 2017

Summary

- LYSO, BaF₂ crystals and LuAG ceramics show excellent radiation hardness beyond 100 Mrad, 1 x 10¹⁵ p/cm² and 2 x 10¹⁵ n/cm². They promise a very fast and robust detector in a severe radiation environment.
- Commercially available undoped BaF₂ crystals provide sufficient fast light with sub-ns decay time. Yttrium doping in BaF₂ crystals increases its F/S ratio from 1/5 to 5/1 while maintaining the intensity of the sub-ns fast component. The slow contamination at this level is already less than commercially available undoped CsI, so is promising for Mu2e-II and GHz X-ray imaging. See talk Wednesday morning.
- Results of the experiments 6991 and 7332 at LANL show fast neutrons up to 2 x 10¹⁵ n/cm² do not damage LYSO, BaF₂ and PWO crystals, confirming early observation at Saclay reactor.
- Our plan is to investigate LYSO:Ce,Ca crystals, LuAG:Ce and LuAG:Pr ceramics, and radiation hardness of Y:BaF₂ crystals. Will also pay an attention to photodetector with DUV response: LAPPD, Si or diamond based solid state detectors.

High-Energy and Ultrafast X-Ray Imaging Technologies and Applications

Organizers: Peter Denes, Sol Gruner, Michael Stevens & Zhehui (Jeff) Wang¹ (Location/Time: Santa Fe, NM, USA /Aug 2-3, 2016)

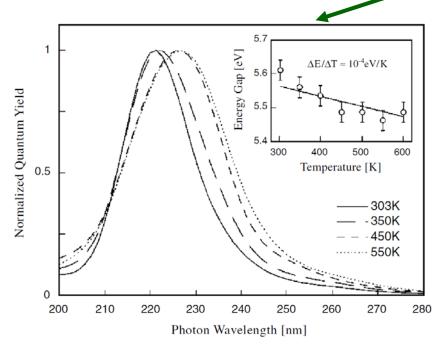
The goals of this workshop are to gather the leading experts in the related fields, to prioritize tasks for ultrafast hard X-ray imaging detector technology development and applications in the next 5 to 10 years, see Table 1, and to establish the foundations for near-term R&D collaborations.

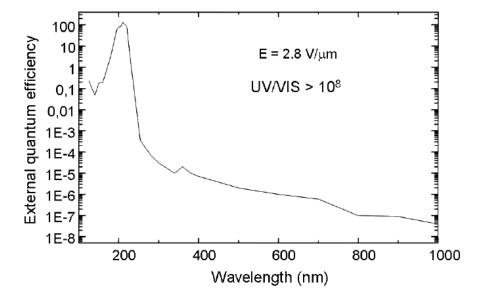
Performance	Type I imager	Type II imager		
X-ray energy	30 keV	42-126 keV		
Frame-rate/inter-frame time	0.5 GHz/2 ns	3 GHz / 300 ps		
Number of frames	10	10 - 30		
X-ray detection efficiency	above 50%	above 80%		
Pixel size/pitch	≤ 300 μm	< 300 μm		
Dynamic range	10 ³ X-ray photons	≥ 10 ⁴ X-ray photons		
Pixel format	64 x 64 (scalable to 1 Mpix)	1 Mpix		

Table I. High-energy photon imagers for MaRIE XFEL

2 ns and 300 ps inter-frame time requires very fast sensor: Talk Wednesday morning

September 18, 2017




Diamond Photodetector

In addition to SiPM with VUV response

E. Monroy, F. Omnes and F. Calle,"Wide-bandgap semiconductor ultraviolet photodetectors, IOPscience 2003 Semicond. Sci. Technol. 18 R33

Figure 6. Quantum efficiency of diamond photoconductors at different temperatures and Arrhenius plot of the peak value (inset). (From [Sal00].)

Fig.4. External quantum efficiency extended to visible and near infrared wavelength regions. The

E. Pace and A. De Sio, "Innovative diamond photo-detectors for UV astrophysics", Mem. S.A.It. Suppl. Vol. 14, 84 (2010)

September 18, 2017