

A Very Fast and Robust BaF₂ Calorimeter for Future HEP/NP Experiments

Ren-Yuan Zhu

California Institute of Technology

May 18, 2017

Report given in the EIC Calorimeter Group Meeting

Introduction

- Fermilab is building a undoped CsI calorimeter for the Mu2e-I detector, which is featured with 30 ns scintillation and surviving ionization dose up to 100 krad. A radiation level exceeding 100 krad is expected by the proposed Mu2e-II, so BaF₂ is being considered.
- With sub-ns fast scintillation and excellent radiation hardness beyond 100 Mrad, BaF₂ promises a very fast and robust calorimeter.
- There are several approaches to handle 600 ns slow scintillation in BaF₂: solar blind photodetector and selective doping in crystal.
- Effective suppression of the slow component has been achieved in Yttrium doped BaF₂ crystals.
- Mass production capability of BaF₂ exists in industry:
 - BGRI (China), Incrom (Russia) and SICCAS (China);
 - Hellma (Germany).

Fast and Slow Signal from BaF₂

The amount of light in the fast component of BaF₂ at 220 nm with sub-ns decay time is similar to undoped CsI.

Spectroscopic selection of fast component may be realized by solar blind photocathode and/or selective doping.

Report Given in the EIC Calorimeter Meeting by Ren-Yuan Zhu, Caltech

Slow Suppression: Doping & Readout

Slow component may be suppressed by RE doping: Y, La and Ce

Z. Y. Wei, R. Y. Zhu, H. Newman, and Z. W. Yin, "Light Yield and Surface-Treatment of Barium Fluoride-Crystals," Nucl Instrum Meth B, vol. 61, pp. 61-66, Jul 1991.

Report Given in the EIC Calorimeter Meeting by Ren-Yuan Zhu, Caltech

Yttrium Doped BaF₂

F/S ratio from 1/5 to 5/1: very effective slow suppression

BGRI/Incrom/SIC BaF₂ Samples

ID	Vendor	Dimension (mm ³)	Polishing
SIC 1-20	SICCAS	30x30x250	Six faces
BGRI-2015 D, E, 511	BGRI	30x30x200	Six faces
Russo 2, 3	Incrom	30x30x200	Six faces

Ionization Damage in BaF₂ & PWO

Dose rate dependent damage in PWO Good radiation hardness in BaF₂ up to 100 Mrad

Fan Yang, et al. IEEE Trans. Nucl. Sci., 2017, 64: 665-672.

40% fast scintillation light remains after 120 Mrad ionization dose

800 MeV Proton Damage in BaF, & PWO

A Hellma BaF₂ of 2 cm was irradiated from 6.1×10¹² to 1.2×10¹⁵ p/cm^2 in six steps with transmittance (330-650 nm) measured *in-situ*. The sample will be measured at Caltech for 200 – 650 nm.

80

70

60

50

40

30

20

10

300

400

500

Wavelength (nm)

10 hr recovery

600

700

Transmittance (%)

plate was irradiated from 1.6×10¹³ to 1.2×10¹⁵ p/cm² with transmittance (300-700 nm) measured in-situ. The RIAC at 420 nm was measured to be 13.1 / 92.2 cm⁻¹ after 2.4×10¹⁴ / 1.2×10¹⁵ p/cm².

350

550

Wavelength (nm)

650

450

Neutron + Ionization Dose in BaF₂ & PWO

Samples in three groups irradiated at the East Port of LANSCE

Results consist with ionization dose induced damage showing no neutron specific damage in BaF₂ and PWO

Summary

- Commercially available BaF₂ crystals provide sufficient fast light with sub-ns decay time and excellent radiation hardness beyond 100 Mrad. They promise a very fast and robust calorimeter in a severe radiation environment.
- Work on yttrium doping in BaF₂ crystals has increased the F/S ratio from 1/5 to 5/1 without using selected readout. The slow contamination at this level is already less than commercially available undoped CsI.
- To be investigated is photodetector with DUV response, e.g. a diamond photo-detector, and radiation hardness of yttrium doped BaF₂ crystals.
- It would be a joint effort with the HEP community if the EIC group will choose to pursue this novel crystal calorimeter.