

Radiation Induced Photocurrent and Noise with SiPM Readout for 30 Preproduction CsI Crystals Ren-Yuan Zhu

California Institute of Technology

March 1, 2017

Talk given in the Mu2e Calorimeter Group Meeting

Introduction

- Mu2e specifications for CsI crystals were defined in early August. A total of 72 crystals from three vendors were delivered to Fermilab early December.
- After QA on visual and dimension by a CMM machine at Fermilab, 36 CsI crystals arrived Caltech late December. Reports of QA on scintillation properties, radiation induced noise with PMT and Gamma-ray induced damage were given on January 11, 17 and February 9, 2017.
- Two reports today:
 - Radiation induced photocurrent with one SiPM readout and the expected RIN with six SIPM readout for 30 preproduction CsI crystals.
 - A Kharkov reference crystal as compared to other two references.

Radiation Induced Photocurrent in SiPM

CsI samples are coupled with an air gap to one of the six SiPMs in Hamamatsu-64 Radiation induced photo current measured for CsI crystals under 2 rad/h (Co-60) $V_{SiPM} = V_0 - I_{SiPM} \times 1 k\Omega$, which is used to extract SiPM gain

History of Current in SiPM

Consistent results following the same procedure as the RIC measurement with PMT

Linearity of SiPM Gain

SiPM gain is linear up to V_{br} +3.5 V tested with 10 ns blue LED pulses

Response of 1- and 3-SiPM to 10 ns LED Pulses

Decay time of 1 and 3 SiPM is 43.6 and 87.5 ns respectively

Calibration of N_{pe}

N_{pe} /channel is 0.401 and 1.39 for 1 and 3 SiPM respectively

Calibration of SiPM Gain

ADC was calibrated to be 0.22 pC/channel by electrical pulses SiPM gain was calculated by net $Peak_{LED} \times 0.22pC/(N_{pe} \times e)$

Gamma-Ray Induced Noise: Amcrys

Hamamatsu-64 SiPM @ 53 V (Gain $\sim 1.2 \times 10^6$) with an air gap to CsI crystals with Tyvek @ 1.8 rad/h and LO_{PMT} in 200 ns scaled with the area of six SiPM

Crystal ID	Batch No.	LO _{PMT} (p.e./MeV)	Dark cur. before irrad. (µA)	Photo cur. @ 2 rad/h (µA)	Dark cur. 20s after irrad. (µA)	Gain for σ ₁ (10 ⁵)	F (p.e./s/rad/hr)	σ ₁ (MeV)	Cal. σ ₆ (MeV) from σ ₁
C0013	011	148	0.387	541	1.079	10.96	1.54×10 ⁹	5.111	2.087
C0016	013	134	0.407	534	1.446	11.04	1.51×10 ⁹	5.589	2.282
C0019	015	125	0.388	537	1.130	11.00	1.53×10 ⁹	6.022	2.458
C0023	024	117	0.391	542	1.425	11.18	1.55×10 ⁹	6.475	2.643
C0025	022	145	0.412	522	4.816	11.18	1.46×10 ⁹	5.073	2.071
C0026	020	132	0.369	317	1.082	13.52	7.32×10^{8}	3.949	1.612
C0027	006	139	0.388	544	1.471	10.93	1.56×10 ⁹	5.468	2.232
C0032	004	122	0.368	316	0.937	13.53	7.30×10 ⁸	4.267	1.742
C0034	012	127	0.392	540	1.440	10.98	1.54×10 ⁹	5.947	2.428
C0036	019	134	0.368	259	7.799	14.19	5.70×10 ⁸	3.432	1.401
Average		132	0.387	465	2.263	11.83	1.27×10 ⁹	5.133	2.096
RMS		7.1%	3.8%	23.9%	94.5%	10.7%	30.8%	18.1%	0.379

Gamma-Ray Induced Noise: S-G

Hamamatsu-64 SiPM @ 53 V (Gain $\sim 1.7 \times 10^6$) with an air gap to CsI crystals with Tyvek 1.8 rad/h and LO_{PMT} in 200 ns scaled with the area of six SiPM

Crystal ID	Batch No.	LO _{PMT} (p.e./MeV)	Dark cur. before irrad. (µA)	Photo cur. @ 2 rad/h (µA)	Dark cur. 20s after irrad. (µA)	Gain for σ ₁ (10 ⁵)	F (p.e./s/rad/hr)	σ ₁ (MeV)	Cal. σ ₆ (MeV) from σ ₁
C0046	A11825	142	0.342	52	0.351	16.56	9.72×10 ⁷	1.338	0.546
C0048	A11823	135	0.350	52	0.364	16.55	9.74×10 ⁷	1.409	0.575
C0049	A11819	142	0.353	52	0.364	16.55	9.75×10 ⁷	1.340	0.547
C0051	A11826	138	0.350	50	0.363	16.57	9.42×107	1.355	0.553
C0057	A11812	137	0.356	51	0.365	16.56	9.67×10 ⁷	1.383	0.565
C0058	A11805	134	0.362	49	0.374	16.58	9.32×10 ⁷	1.388	0.567
C0062	A11811	138	0.351	51	0.360	16.56	9.66×10 ⁷	1.372	0.560
C0063	A11807	136	0.357	49	0.368	16.58	9.28×10 ⁷	1.365	0.557
C0065	A11815	134	0.349	51	0.358	16.57	9.56×10 ⁷	1.406	0.574
C0066	A11808	136	0.348	51	0.362	16.56	9.60×10 ⁷	1.388	0.567
Average		137	0.352	51	0.363	16.56	9.57×10 ⁷	1.374	0.561
RMS		2.0%	1.5%	1.7%	1.6%	0.1%	1.8%	1.7%	0.010

Hamamatsu-64 SiPM @ 53 V (Gain ~ 1.6×10^6) with an air gap to CsI crystals with Tyvek @ 1.8 rad/h and LO_{PMT} in 200 ns scaled with the area of six SiPM

Crystal ID	Batch No.	LO _{PMT} (p.e./MeV)	Dark cur. before irrad. (µA)	Photo cur. @ 2 rad/h (µA)	Dark cur. 20s after irrad. (µA)	Gain For σ ₁ (10 ⁵)	F (p.e./s/rad/hr)	σ ₁ (MeV)	Cal. σ ₆ (MeV) from σ ₁
C0037	A13	150	0.353	97	1.140	16.04	1.89×10^{8}	1.764	0.720
C0038	A14	154	0.363	101	0.716	15.99	1.97×10^{8}	1.757	0.717
C0039	A15	153	0.345	101	1.171	15.99	1.98×10^{8}	1.772	0.723
C0040	A16	152	0.357	96	1.066	16.04	1.88×10^{8}	1.736	0.709
C0041	A17	163	0.354	106	1.507	15.93	2.09×10^{8}	1.707	0.697
C0042	A18	154	0.359	104	1.311	15.96	2.03×10^{8}	1.782	0.727
C0043	A19	136	0.359	168	0.597	15.23	3.44×10 ⁸	2.629	1.073
C0068	A24	172	0.364	110	0.541	15.88	2.17×10^{8}	1.650	0.674
C0072	A22	174	0.385	95	1.077	16.06	1.85×10^{8}	1.506	0.615
C0073	A21	176	0.367	94	0.833	16.07	1.83×10^{8}	1.481	0.605
Average		158	0.361	107	0.996	15.92	2.11×10 ⁸	1.778	0.726
RMS		7.6%	2.8%	19.4%	30.0%	1.5%	21.6%	17.0%	0.123

Correlation: Dark Current vs. RIC

Correlation observed between the dark current and the Gamma-ray induced photocurrent

Correlation with F/T ratio

Both dark currents and RIN are correlated with the F/T

Correlation between Photocurrents Measured by SiPM & PMT

Excellent correlations observed between currents measured by Hamamatsu-64 SiPM and R2059 PMT

Consistent fit for both dark currents in ratio and offset Different ratio and offset for RIC is due to different emission

Summary

- Radiation induced photocurrent was measured by a single Hamamatsu-64 SiPM for 30 Mu2e preproduction CsI crystals, and is converted to RIN for SiPM readout assuming that light output of CsI measured by a single SiPM is scaled from that by PMT according to the area coverage, i.e. the QE of PMT is the same of the SiPM PDE.
- SiPM gain was determined by using 10 ns blue LED pulses.
- RIN for six SiPMs is scaled down by a factor of V6.
- To be investigated: Absolute light output of SiPM readout with source and QE/PDE response of the PMT/SiPM for the CsI fast and slow scintillation.
- 24 preproduction CsI crystals were shipped to Frascati for module zero construction.
- A Kharkov reference CsI has been characterized, and is on the way to Kharkov: see report about 3 reference CsI.

Mike's Data on a Dummy

March 1, 2017