



## Gamma-ray Induced Radiation Damage in Six Preproduction CsI Crystals

### **Ren-Yuan Zhu**

#### California Institute of Technology

February 9, 2017

Talk given in the Mu2e Calorimeter Group Meeting



## Introduction



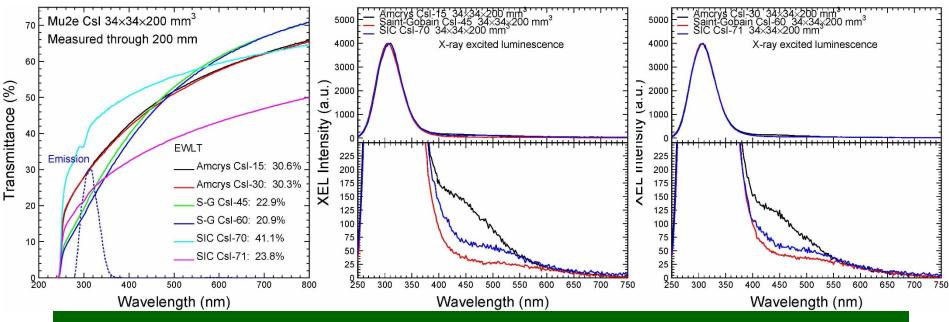
- Mu2e specifications for CsI crystals were defined in early August. A total of 72 crystals from three vendors were delivered to Fermilab early December.
- After QA on visual and dimension by a CMM machine at Fermilab, 36 CsI crystals arrived Caltech late December. Reports of QA on scintillation properties and radiation induced noise with PMT readout were given on January 11 and 17, 2017.
- Reported today is radiation damage data measured after 10 and 100 krad γ-rays for six CsI samples (2 from each vendor) which failed mechanical specifications:
  - AMCRYS 15 and 30: low LO, failed RIN, 15 also failed F/T;
  - Saint-Gobain 45 and 60;
  - SICCAS 70 and 71: 71 failed LRU.



# **Specifications for Undoped Csl**



- $\Box$  Crystal lateral dimension: ±100 µ, length: ±100 µ.
- ❑ Scintillation properties at seven points along the crystal wrapped by two layers of Tyvek paper of 150 µm for alternative end coupled to a bi-alkali PMT with an air gap. Light output and FWHM resolution are the average of seven points with 200 ns integration time. The light response uniformity is the rms of seven points. F/T is measured at the point of 2.5 cm to the PMT.
  - Light output (LO): > 100 p.e./MeV with 200 ns gate, will be compared to reference for cross-calibration;
  - □ FWHM Energy resolution: < 45% for Na-22 peak;
  - Light response uniformity (LRU, rms of seven points): < 5%;
  - □ Fast (200 ns)/Total (3000 ns) Ratio: > 75%.
- Radiation hardness:
  - □ Radiation Induced noise @ 1.8 rad/h: < 0.6 MeV;
  - □ Normalized LO after 10/100 krad: > 85/60%.






### **Initial Performance before Irradiation**

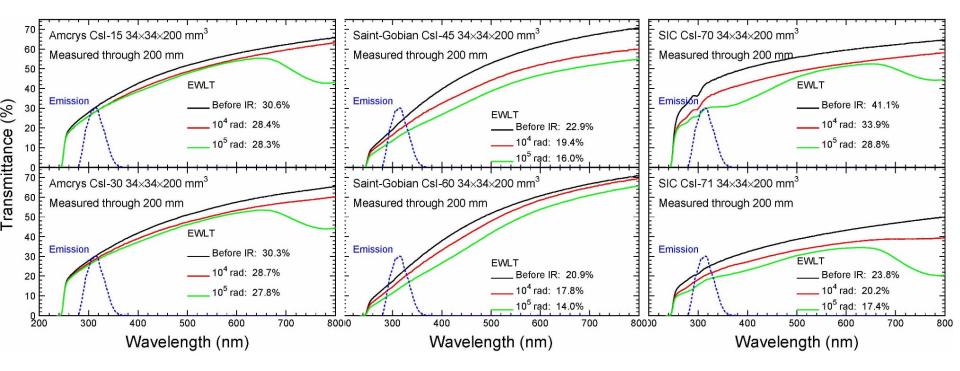


| Crystal<br>ID | Batch<br>Number | Coupling<br>end | EWLT<br>(%) | F/T (%)-1 <sup>st</sup> | F/T (%)-2 <sup>rd</sup> | LRU (%)-1 <sup>st</sup> | LRU (%)-2 <sup>rd</sup> |
|---------------|-----------------|-----------------|-------------|-------------------------|-------------------------|-------------------------|-------------------------|
| C0015         | Amcrys-007      | а               | 30.6        | 68.2                    | 69.0                    | 1.65                    | 0.98                    |
| C0030         | Amcrys-001      | а               | 30.3        | 76.6                    | 77.0                    | 2.40                    | 1.49                    |
| C0045         | SG-A11827       | а               | 22.9        | 98.9                    | 98.7                    | 0.92                    | 0.92                    |
| C0060         | SG-A11804       | а               | 20.9        | 98.3                    | 97.3                    | 1.96                    | 1.08                    |
| C0070         | SIC-2016 A20    | а               | 41.1        | 93.0                    | 92.6                    | 1.39                    | 2.04                    |
| C0071         | SIC-2016 A23    | а               | 23.8        | 97.1                    | 95.8                    | 5.63                    | 5.61                    |



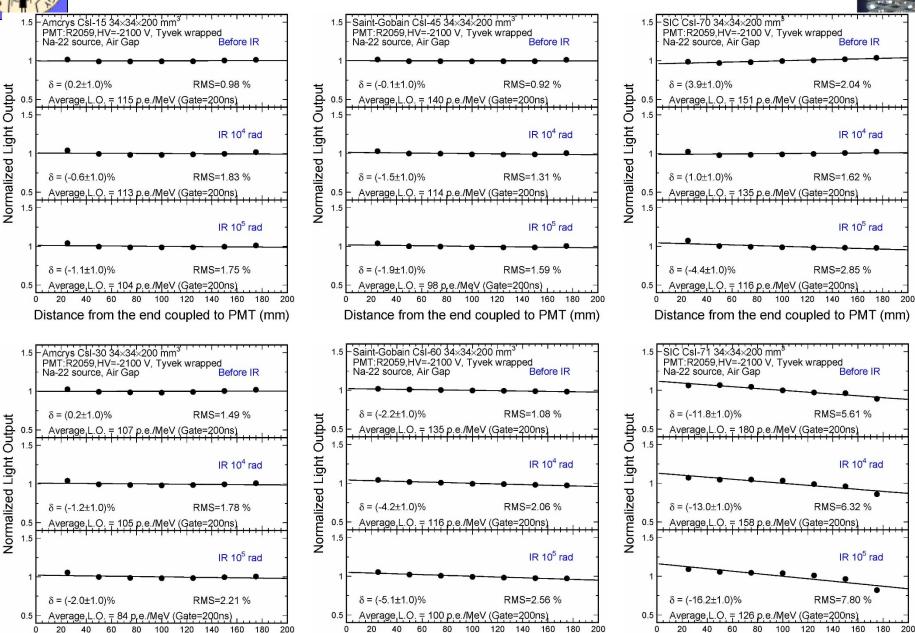
#### Surface dependent transmittance and slow emission confirmed

February 9, 2017


Talk Presented in the Mu2e Calorimeter Group Meeting by Ren-Yuan Zhu, Caltech



# **Longitudinal Transmittance**




While initial longitudinal transmittance spectra (LT) are surface dependent, variations of the LT spectrum and the numerical values of emission weighted LT can be used to represent CsI radiation damage





THE OF THE



February Distance from the end coupled to PMT (mini) Presente Distance from the rend coupled to RM/ITg(Inni)en-Yuan ZIDistance from the end coupled to PMT (mm)

) 6

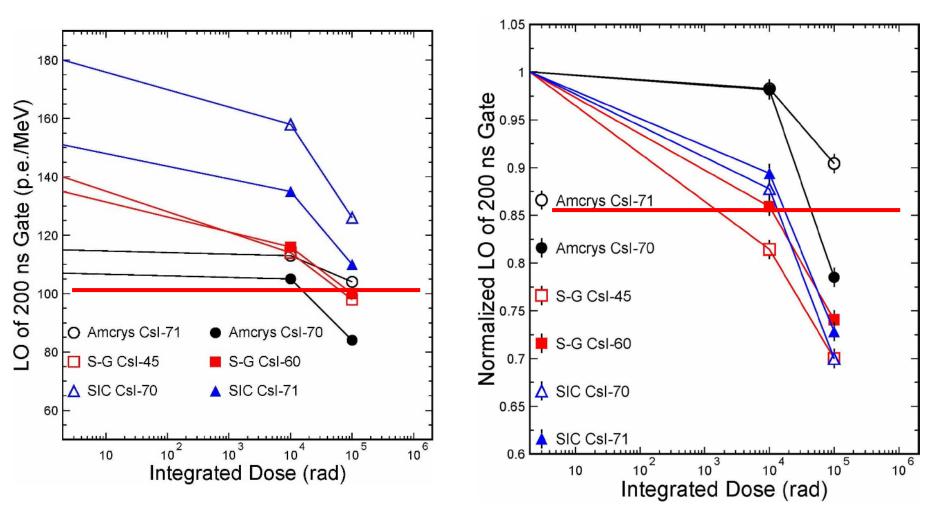


## **Radiation Damage Results**



| Crystal<br>ID | Batch<br>Number | Dose<br>(krad) | EWLT<br>(%) | Normalized<br>EWLT (%) | L.O.<br>(p.e./MeV) | Normalized<br>L.O. (%) | E.R.<br>(%) | F/T<br>(%) | LRU<br>(%) | δ (%) |
|---------------|-----------------|----------------|-------------|------------------------|--------------------|------------------------|-------------|------------|------------|-------|
| C0015         | Amcrys-<br>007  | 0              | 30.6        | 100                    | 115                | 100                    | 38          | 69.0       | 0.98       | 0.2   |
|               |                 | 10             | 28.4        | 92.8                   | 113                | 98.1                   | 38          | 70.6       | 1.83       | -0.6  |
|               |                 | 100            | 28.3        | 92.5                   | 104                | 90.2                   | 39          | 73.2       | 1.75       | -1.1  |
| C0030         | Amcrys-<br>001  | 0              | 30.3        | 100                    | 107                | 100                    | 40          | 77.0       | 1.49       | 0.2   |
|               |                 | 10             | 28.7        | 94.7                   | 105                | 98.4                   | 39          | 78.4       | 1.78       | -1.2  |
|               |                 | 100            | 27.8        | 91.7                   | 84                 | 79.7                   | 41          | 80.5       | 2.21       | -2.0  |
| C0045         | SG-<br>A11827   | 0              | 22.9        | 100                    | 140                | 100                    | 34          | 98.7       | 0.92       | -0.1  |
|               |                 | 10             | 19.4        | 84.7                   | 114                | 81.2                   | 38          | 98.2       | 1.31       | -1.5  |
|               |                 | 100            | 16.0        | 69.9                   | 98                 | 69.6                   | 41          | 100.0      | 1.59       | -1.9  |
| C0060         | SG-<br>A11804   | 0              | 20.9        | 100                    | 135                | 100                    | 34          | 97.3       | 1.08       | -2.2  |
|               |                 | 10             | 17.8        | 85.2                   | 116                | 85.7                   | 38          | 97.8       | 2.06       | -4.2  |
|               |                 | 100            | 14.0        | 67.0                   | 100                | 73.8                   | 41          | 99.9       | 2.56       | -5.1  |
| C0070         | SIC-2016<br>A20 | 0              | 41.1        | 100                    | 151                | 100                    | 35          | 92.6       | 2.04       | 3.9   |
|               |                 | 10             | 33.9        | 82.5                   | 135                | 89.3                   | 37          | 90.0       | 1.62       | 1.0   |
|               |                 | 100            | 28.8        | 70.1                   | 116                | 77.1                   | 40          | 91.4       | 2.85       | -4.4  |
| C0071         | SIC-2016<br>A23 | 0              | 23.8        | 100                    | 180                | 100                    | 33          | 95.8       | 5.61       | -11.8 |
|               |                 | 10             | 20.2        | 84.9                   | 158                | 87.5                   | 37          | 98.4       | 6.32       | -13.0 |
|               |                 | 100            | 17.4        | 73.1                   | 126                | 69.9                   | 42          | 98.3       | 7.80       | -16.2 |

February 9, 2017

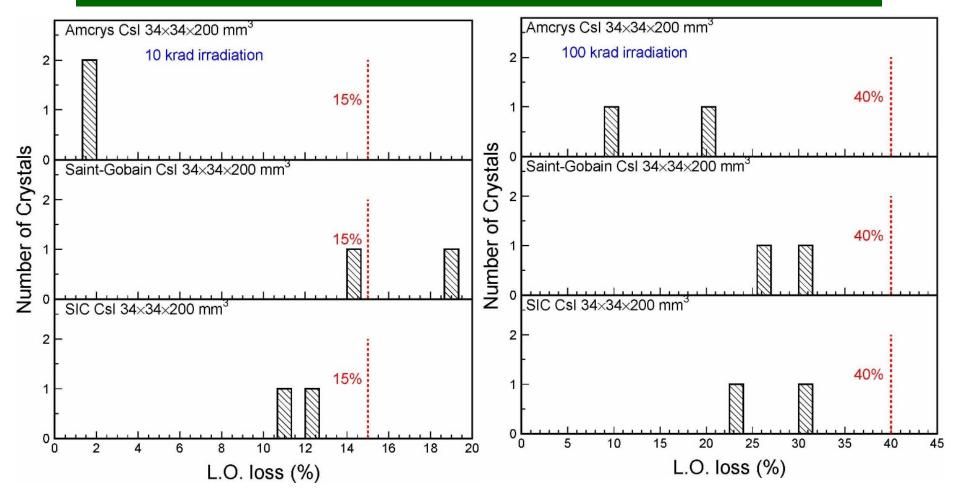

Talk Presented in the Mu2e Calorimeter Group Meeting by Ren-Yuan Zhu, Caltech



### **Damage in Light Output**



#### Most CsI with LO > 100 p.e./MeV after 100 krad All satisfy radiation spec, except S-G 45 failed 10k



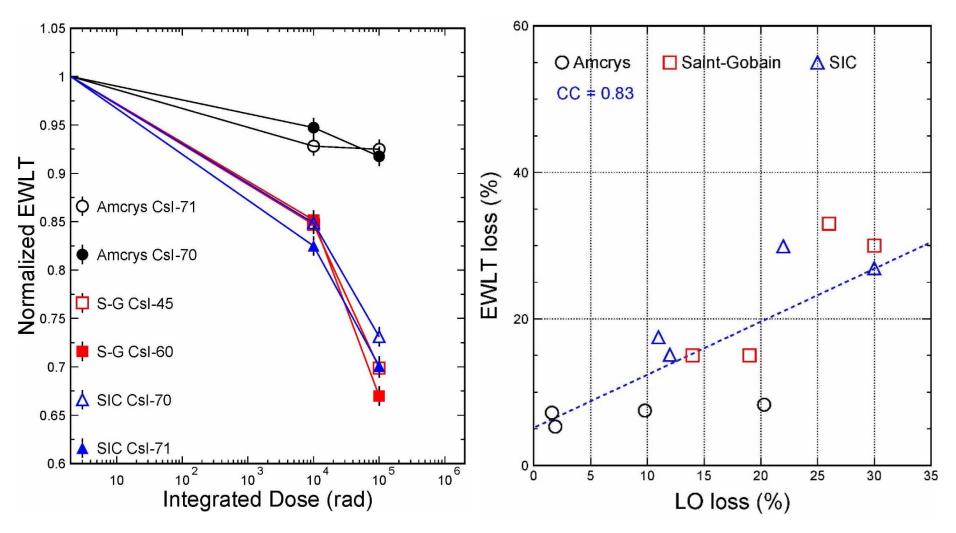



# Summary of LO Degradation



#### All satisfy radiation spec except S-G 45 after 10 krad Rank: Kharkov, SIC and S-G




Talk Presented in the Mu2e Calorimeter Group Meeting by Ren-Yuan Zhu, Caltech



## **EWLT Damage & Correlation with LO**



#### Good correlation between variations of LT and LO





# Summary



- Gamma-ray induced radiation damages in both transmittance and light output are measured after 10 and 100 krad for six Mu2e preproduction CsI crystals which failed the mechanical specifications.
- All crystals meet the Mu2e radiation damage specifications, except one Saint-Gobain sample (#45) which does not meet damage spec after 10 krad but meets that after 100 krad.
- Most crystals have light output larger than 100 p.e./MeV after 100 krad, promising a robust CsI calorimeter.
- Good correlation is observed between variations of LT and LO, indicating a feasibility of light monitoring.
- 24 samples will be shipped to Frascati for Module 0 construction. Six samples will remain at Caltech for further investigation.



# QC on CsI Radiation Damage



- Most crystal vendors do not have a capability to test radiation hardness, so this will be our responsibility
- Crystals are grown in ingots, either a large size ingot or multiple small ones in each growth. We may test small samples, e.g. φ1" x 1", cut from ingots from each growth for radiation damage QC.
- Crystals are delivered in batches. We may measure two randomly selected samples in each batch for radiation damage QC.
- Prompt feedback to, and communications with, vendors are important for QC of mass produced CsI crystals.