

A Comparison of Monitoring Data with Radiation Damage in PWO Crystals by Ionization Dose and Charged Hadrons

Ren-Yuan Zhu

California Institute of Technology October 28, 2010

CMS ECAL Days 2016 at Lyon, France

Introduction

- Both ionization dose and charged hadrons cause radiation damage in PWO crystals.
- Ionization dose induced damage in PWO recovers, so is dose rate dependent. Damage caused by deep centers recovers slowly.
- Degradations shown in ECAL monitoring data include effects of both PWO crystals and photodetectors.
- Degradations in PWO crystals can be estimated by using ionization dose and charged hadrons induced absorption in the radiation environment calculated by BRIL.

ECAL Laser Monitoring Data

How much the degradation is due to crystals?

Dose Rate Dependent Damage

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

Light output reaches an equilibrium during irradiation under a defined dose rate, showing dose rate dependent damage

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- *R*: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

Light and Transmittance Loss

BTCP & SIC PWO @ 100 and 400 rad/h & recovery AIP Conference Proceedings 867 (2006) 252

Recovery after y Irradiation

Deep color centers recover slowly, which would cause cumulative radiation damage

Sample	T/T₀ @ 9 krad/hr	T/T₀ after recovery	μ @9 krad/hr (cm ⁻¹)	µ after recovery (cm ⁻¹)	Not recovery ratio (%)
SIC-L611	0.781	0.868	1.124	0.643	57.3
SIC-L616	0.766	0.870	1.212	0.633	52.2
SIC-L620	0.844	0.918	0.771	0.389	50.4

EWRIAC versus Dose Rate

Average EWRIAC: 2nd order polynomials of dose rate Large spread at high dose rate; consistent BTCP and SIC IEEE Trans. Nucl. Sci. NS-51 1777 (2004)

Presented in CMS ECAL Days 2016 at LYON by Ren-Yuan Zhu, Caltech

EWRIAC and μ_{440} in PWO

Excellent correlation between **EWRIAC** and $\mu_{440}\,$ nm measured for all BTCP and SIC **PWO crystals**

Monitoring Light Path Length

Average optical path lengths in EB/EE crystals are estimated by a ray-tracing simulation to be 1.3 and 2.3 PWO length for the barrel and endcaps respectively

EB PWO: 22²×230×26² mm³ Readout: 2x 5×5 mm² APDs with n=1.5 One lateral face semi-polished Ra=0.25 μm All other faces optically polished Reflectivity of wrapping: R=0.98.

EE PWO: 28.5²×220×30² mm³ Readout: Φ26.6 mm VPT with n=1.5. All faces optically polished Reflectivity of wrapping: R=0.98

Ionization Damage in PWO

Dose rate for pp obtained from BRIL

(https://cms-project-fluka-flux-map.web.cern.ch/cms-project-fluka-flux-map/

Run I: CMS_pp_4.0TeV_2012_FLUKA Run II: CMS_pp_7TeV_v3.0.0.0_FLUKA

CMS ECAL	η=0	η=0.5	η=1.0	η=1.478	η=1.5	η=1.7	η=2.0	η=2.3	η=2.6	η=2.9
Run I Dose rate (rad/hr)	10	11	14	17	6	35	86	211	329	433
Run I µ₄₄₀ոՠ (m⁻¹)	0.125	0.133	0.152	0.175	0.089	0.254	0.378	0.527	0.610	0.664
Run II Dose rate (rad/hr)	25	27	34	42	16	63	167	385	706	1170
Run II µ _{440nm} (m ⁻¹)	0.216	0.223	0.250	0.276	0.165	0.332	0.486	0.640	0.765	0.877

Dose Rate Dependent Monitoring Loss

γ-ray induced absorption can not explain monitoring loss @ high rapidity: look damage caused by charged hadron

Particle Energy Spectra at HL-LHC

FLUKA simulations: neutrons and charged hadrons are peaked at MeV and several hundreds MeV respectively. Neutron energy of 2.5 MeV from Cf-252 source and proton energy of 800 MeV at LANL are ideal for such investigation

Presented in CMS ECAL Days 2016 at LYON by Ren-Yuan Zhu, Caltech

Proton/Neutron Irradiation at LANL

800 MeV p-Irradiation at LANL

October 28, 2016

The Proton-Irradiation Setup

LT (300-800 nm) of long crystals was measured before and after each irradiation step by a Xenon lamp and fiber based spectrophotometer. A LYSO-W-Capillary Shashlik cell was monitored before and after each irradiation step by a 420 LED based monitoring system.

October 28, 2016

Presented in CMS ECAL Days 2016 at LYON by Ren-Yuan Zhu, Caltech

Proton Irradiation at LANL 2015

A 22 cm PWO sample shows 32 m⁻¹ at 450 nm 38 hours after 1.8×10¹⁴ p/cm² of 800 MeV protons

CMS Integrated Luminosity

Run I (2010-2012) : 7-8 TeV, 30 fb⁻¹. Run II (2015-2016 Oct.): 13 TeV, 40 fb⁻¹

Data included from 2010-03-30 11:22 to 2016-10-13 12:02 UTC

Presented in CMS ECAL Days 2016 at LYON by Ren-Yuan Zhu, Caltech

Charged Hadron Fluence

https://cms-project-fluka-flux-map.web.cern.ch/cms-project-fluka-flux-map/ Run I: CMS_pp_4.0TeV_2012_FLUKA Run II: CMS_pp_7TeV_v3.0.0.0_FLUKA

CMS ECAL	η=0	η=0.5	η=1.0	η=1.48	η=1.5	η=1.7	η=2.0	η=2.3	η=2.6	η=2.9
Run I (cm ⁻²)	3.63E+10	3.26E+10	3.66E+10	4.38E+10	2.46E+10	1.10E+11	3.51E+11	9.19E+11	1.95E+12	3.59E+12
Run II (cm ⁻²)	4.09E+10	4.17E+10	4.49E+10	5.04E+10	4.93E+10	1.56E+11	5.31E+11	1.28E+12	2.92E+12	5.91E+12
Total (cm ⁻²)	7.72E+10	7.43E+10	8.15E+10	9.42E+10	7.39E+10	2.66E+11	8.82E+11	2.20E+12	4.87E+12	9.50E+12

Estimated RIAC @ 440 nm

RIAC values at 440 nm calculated using γ-ray and proton irradiation data Damage in EB is dominated by ionization dose Charged hadron starts to play role at large η

Run-l RIAC (m ⁻¹)	η=0	η=0.5	η=1.0	η=1.478	η=1.5	η=1.7	η=2.0	η=2.3	η=2.6	η=2.9
CH. Run I	0.007	0.007	0.008	0.008	0.004	0.022	0.068	0.179	0.386	0.701
lonization Run I	0.125	0.133	0.152	0.175	0.089	0.254	0.378	0.527	0.610	0.664
Total	0.132	0.140	0.160	0.184	0.094	0.275	0.447	0.706	0.996	1.365

Run-II RIAC (m⁻¹)	η=0	η=0.5	η=1.0	η=1.478	η=1.5	η=1.7	η=2.0	η=2.3	η= 2. 6	η=2.9
CH. Run I	0.007	0.007	0.008	0.008	0.004	0.022	0.068	0.179	0.386	0.701
CH. Run II	0.007	0.007	0.008	0.009	0.009	0.028	0.094	0.225	0.515	1.041
lonization Run II	0.216	0.223	0.250	0.276	0.165	0.332	0.486	0.640	0.765	0.877
Total	0.230	0.237	0.265	0.294	0.178	0.381	0.648	1.044	1.666	2.619

Comparison with Monitoring Data

Agreement observed in ECAL of η <2.5 after adding contribution from charged hadrons. Additional contribution needed for η >2.5

Presented in CMS ECAL Days 2016 at LYON by Ren-Yuan Zhu, Caltech 20

20

Other Contributions (VPT)?

An extra degradation factor at η >2.0 up to 0.6 observed.

Run I (Dec. 2012)	η=0	η=0.5	η=1.0	η=1.478	η=1.5	η=1.7	η=2.0	η=2.3	η=2.6	η=2.9
CH. Run I RIAC (m ⁻¹)	0.007	0.007	0.008	0.008	0.004	0.022	0.068	0.179	0.386	0.701
Ionization Run I (m ⁻¹)	0.125	0.133	0.152	0.175	0.089	0.254	0.378	0.527	0.610	0.664
Total RIAC (m ⁻¹)	0.132	0.140	0.160	0.184	0.094	0.275	0.447	0.706	0.996	1.365
Estimated Monitoring	0.961	0.959	0.953	0.947	0.954	0.870	0.798	0.699	0.604	0.501
Monitoring Data	0.95	0.95	0.95	0.95	0.95	0.9	0.81	0.7	0.52	0.32
Additional Factor Needed	0.99	0.99	1.00	1.00	1.00	1.03	1.02	1.00	0.86	0.64
Run II (Oct. 2016)	η=0	η=0.5	η=1.0	η=1.478	η=1.5	η=1.7	η=2.0	η=2.3	η= 2. 6	η=2.9
CH. Run I RIAC (m ⁻¹)	0.007	0.007	0.008	0.008	0.004	0.022	0.068	0.179	0.386	0.701
CH. Run II RIAC (m ⁻¹)	0.007	0.007	0.008	0.009	0.009	0.028	0.094	0.225	0.515	1.041
Ionization Run II (m ⁻¹)	0.216	0.223	0.250	0.276	0.165	0.332	0.486	0.640	0.765	0.877
Total RIAC (m ⁻¹)	0.230	0.237	0.265	0.294	0.178	0.381	0.648	1.044	1.666	2.619
Estimated Monitoring	0.934	0.932	0.924	0.916	0.914	0.825	0.720	0.589	0.430	0.266
Monitoring Data	0.92	0.92	0.92	0.92	0.92	0.82	0.7	0.56	0.36	0.16
Additional Factor Needed	0.99	0.99	1.00	1.00	1.01	0.99	0.97	0.95	0.84	0.60

Summary

- Lead tungstate crystals suffer from radiation damges caused by ionization dose and charged hadrons.
- Absorption in PWO crystals induced by ionization dose and charged hadrons can explain monitoring data up to η=2.5. An additional VPT degradation factors at 60% level shown in Sasha's talk explains data at η>2.5.
- Taking into account deep color centers, the ionization dose induced damage may be underestimated. There are still large uncertainties in hadron induced damage.
 - Charged hadron induced damage in PWO; and
 - Neutron induced damage if any.
- Next two years are crucial to see more degradation in PWO. Additional data on hadron induced damage in PWO will make the whole picture more clear.

132 Days after Irradiation

Result of 10 PWO after 122 Days

80 PWO SIC 25×25×10 mm³ Recovery 122 days after 800 MeV Protons IR After 800 MeV Protons IR 2.94×10¹⁴ p/cm² Fluence Normalized RIAC (m⁻¹) RIAC@420 nm 60 Average RIAC@420 nm: 18.6±0.7 m⁻¹ RIAC@440 nm Average RIAC@440 nm: 14.0±0.7 m⁻¹ 40 20 0 2 3 5 9 10 6 8 11 0 ID to Upstream End

Average RIAC value of 14 m⁻¹ at 440 nm 122 days after 2.94×10¹⁴ p/cm² of 800 MeV protons.

A factor of 3.7 lower than that measured 38 h after, showing damage recovery In PWO

Comparison with ETH data

Use RIAC after 122 Days

A larger additional factor needed at large rapidity, indicating more works are needed to pin down effect from charged hadrons

Neutron Irradiation at LANL

18 LFS plates of 14×14×1.5 mm³ in 3 groups were removed after 13.4, 54.5 and 118 days respectively. Light output and transmittance were measured at Caltech after cooled down.

	Group-1 (BOET 107-112)	Group-2 (BOET 101-106)	Group-3 (BOET 95-100)
Particles / Dose	Fluence (cm ⁻²)	Fluence (cm ⁻²)	Fluence (cm ⁻²)
Thermal and Epithermal, Neutrons (0 <en 1="" <="" ev)<="" td=""><td>7.01E+14</td><td>3.16E+15</td><td>5.64E+15</td></en>	7.01E+14	3.16E+15	5.64E+15
Slow and Intermediate Neutrons (1 eV <en 1="" <="" mev)<="" td=""><td>2.56E+15</td><td>1.15E+16</td><td>2.05E+16</td></en>	2.56E+15	1.15E+16	2.05E+16
Fast Neutrons (En > 1 MeV)	2.24E+14	1.01E+15	1.80E+15
Protons (Ep>1 MeV)	5.31E+11	2.39E+12	4.27E+12
Protons Ionization Dose (rad)	1.39E+04	6.25E+04	1.12E+05
Photons (Eg>150 KeV)	6.71E+14	3.02E+15	5.39E+15
Photons Ionization Dose (rad)	2.40E+07	1.08E+08	1.93E+08

LO Loss after n-Irradiation

Light output measured by UV LED excitation and Y-11 WLS fibers with degradations of 3%,13% and 24% for Group-1, 2 and 3 respectively, which may be explained by ionization dose only. Pb shielding is implemented in 2016 irradiation to reach a conclusion.

