

A Crystal Shashlik Electromagnetic Calorimeter for Future HEP Experiments

Ren-Yuan Zhu

California Institute of Technology

May 17, 2016

Talk in the XVII International Conference on Calorimetry in Particle Physics, Daegu

Collaborators

A. Bornheim, H. Newman, M. Spiropulu, F. Yang, L. Zhang, R-Y Zhu (Caltech) T. Adams, A. Askew (Florida State University) B. Bilki, P. Debbins, Y. Onel (University of Iowa) B. Baumbaugh, N. Dev, B. Dolezal, A. Heering, C. Jessop, P. Link, M. Marinelli, M. McKenna, C. Mohs, Y. Musienko, R. Ruchti, N. Siwietz, J. Taylor, M.Vigneault, M. Wayne (University of Notre Dame) M. Arenton, B. Cox, S. Goadhouse, R. Hirosky, Al Ledovskoy, H. Li, C Neu, E. Wolfe (University of Virginia) R. Becker, G. Dissertori, W. Lustermann, F. Micheli, F. Nessi-Tedaldi (ETH Zurich) T. Tabarelli-de Fatis (INFN Milano-Bicocca) P. Meridani (INFN Roma 1)

May 17, 2016

Why Crystal Calorimetry in HEP?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential for HEP experiments.
- Performance of crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- A crystal Shashlik ECAL concept was developed to preserve precision e/γ measurements and face the challenge of the severe radiation environment expected by the future HEP experiments at the energy frontier.

Physics with Crystal Calorimetry

Charmonium system observed by CB through Inclusive photons

CB Nal(TI)

Higgs -> $\gamma\gamma$ by CMS through reconstructing photon pairs

CMS PWO

 $\gamma\gamma$ bumps at 750 GeV reported in this conference hint the importance of the EM resolution at HL-LHC

May 17, 2016

Ionization dose induced dose rate dependent damage in PWO is well understood

CMS Preliminary

Reduce Light Path Length

May 17, 2016

An Option for CMS FCAL Upgrade

Typical Shashlik resolution: 10%/VE + 1%

A 4 x 4 LYSO/W/Y-11 Array for 2014 BT

A LYSO/W/Y-11 Tower for 2014 BT

May 17, 2016

Resolution in CERN H4 Beam

Good resolution achieved at high energies

LYSO/W/Quartz Capillary Shashlik

May 17, 2016

TISTITUTE OF

A LYSO/W/Capillary Tower for 2015 BT

A 4 x 4 matrix will be tested at CERN in 2016

Bright, Fast Scintillator: LSO/LYSO

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
Density (g/cm³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	26	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	4.7	36 4.1	21	85	0.3 0.1	?
d(LY)/dT ^ь (%/ ⁰C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV S. BELLE Mu2e	(GEM) TAPS Mu2e-II	L3 BELLE EIC?	COMET {Mu2e,SuperB) CMS?	CMS ALICE PANDA	A4 g-2 HHCAL?
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.								

May 17, 2016

Bright, Fast & Rad Hard LYSO

623 SIC LYSO Plates of 14 x 14 x 1.5 mm with Five Holes

- LYSO is a bright (200 times of PWO), fast (40 ns) crystal scintillator widely used in the medical industry with mass production capability. It is also the most radiation hard crystal.
- Damage in LYSO does not recover, leading to a stable calorimeter.
 - γ-ray and proton induced absorption coefficient is about 3 m⁻¹ for 150 Mrad or 3 x 10¹⁴ p/cm², leading to a robust calorimeter with few percent light output loss at the HL-LHC.

See two talks on May 19, 2016, in this conference for the details

May 17, 2016

RIAC at 430 nm in LYSO

Consistent RIAC at 430 nm is observed in LYSO and LFS plates irradiated by 24 GeV protons up to 8.19 x 10¹⁵p/cm² at CERN in 2014 and 2015.

LO: Direct & Y-11 Couplings

Data consistent with average light path length of 1.1 and 2.4 cm at 430 nm for direct and Y-11 readout respectively.

6% light output loss in LYSO plates @ 3E14 with Y-11 readout

LFS/W/Capillary: 800 MeV Protons

A Shashlik tower irradiated to 1.2×10^{15} p/cm² in 3 steps with degradation of 20%/50% after $4.3 \times 10^{14}/1.24 \times 10^{15}$ p/cm²

~10% light output loss in a LYSO/capillary based Shashlik tower @ 3E14

Normalized Monitoring Signal

NSTITUTA

Radiation Hardness: Quartz Capillary

Radiation Hardness: SiPM

Radiation hardness: GalnP

Generation 3" first GaInP devices compared to GaAs

Generation 5 followed these with device structure further optimized for increased radiation tolerance

Alternative: LuAG:Ce Ceramics

Sample ID	Dimension (mm3)
LuAG S1	$25 \times 25 \times 0.4$
LuAG S2	$25 \times 25 \times 0.4$

Rad hard up to 220 Mrad

May 17, 2016

Summary

- Precision e/γ by total absorption crystal calorimeters provide excellent physics discovery potential.
- To preserve precision e/γ and face the challenge of the radiation environment expected by future HEP experiments at the energy frontier, a crystal based Shashlik calorimeter reduces the light path length in crystals and thus enhances the radiation hardness.
- Bright, fast and radiation hard LSO/LYSO crystals provide a solid foundation for a stable and robust Shashlik calorimeter. Developments on quartz capillary based WLS and photo-detectors are very encouraging.
- Scintillating ceramics and glasses, such as LuAG:Ce ceramics, may play an important role for a cost-effective Shashlik calorimeter concept.