‡Fermilab

Calorimeter Technical Review: Crystals: Quality & Radiation Hardness

Ren-Yuan Zhu California Institute of Technology 7/27/2015

Mu2e

Introduction

- The Mu2e baseline choice is BaF₂ with pure CsI as backup.
- Requirements:

1176

- Light Output (LO): 100 p.e./MeV by bi-alkali PMT;
- Light response uniformity (LRU): TBD, < 20%.
- Radiation environment:

 - Neutron fluence: $2 \times 10^{11} \text{ n/cm}^2/\text{year} \longrightarrow 10^{12} \text{ n/cm}^2$.
- Requirements after 100 krad and 10¹² n/cm²:
 - LO: > 50 p.e./MeV, no significant damage to LRU;
 - Radiation induced phosphorescence is under control.
- Since the CD-2 review investigations were concentrated on BaF₂ and pure CsI as backup from various vendors:
 - BaF₂: BGRI (Beijing), Incrom (St. Petersburg) and SICCAS;
 - Pure CsI: Kharkov, Opto Materials (Italy) and SICCAS.

Measurements

- Longitudinal transmittance (LT) was measured by using a Perkin-Elmer Lambda 950 spectrophotometer. (0.15%)
- Pulse height spectrum (PHS), FWHM energy resolution of 511 keV γ-rays (ER), LO, LRU and decay time were measured by a Hamamatsu R2059 PMT and coincidence triggers from a ²²Na source. All samples were wrapped with two layers of Tyvek paper. (<1%)
- PHS/ER/LO/LRU were measured with Dow-Corning 200 grease and air gap respectively for BaF₂ and pure CsI because of the soft and hygroscopic surface of CsI.
- Gamma-ray irradiation was carried out at Caltech with degradations in LT, LO, FWHM and LRU measured.
- Neutron irradiation was carried out at Caltech and INFN.

🔁 Fermilab

Basic Property of BaF₂ and pure Csl

	LSO/LYSO	GSO	YSO	Csl	BaF₂	CeF₃	CeBr₃	LaCl₃	LaBr₃	Plastic scintillator (BC 404) ^①	
Density (g/cm ³)	7.4	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03	
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70 [#]	
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.7	1.96	2.81	1.88	42.54	
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.1	2.41	2.97	3.71	2.85	9.59	
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8	
Z value	64.8	57.9	33.3	54	51.6	50.8	45.6	47.3	45.6	5.82	
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.9	2.02	
Emission Peak ^a (nm)	420	430	420	310	300 220	340 300	371	335	356	408	
Refractive Index ^b	1.82	1.85	1.8	1.95	1.5	1.62	1.9	1.9	1.9	1.58	
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	99	15 49	153	35	
Decay Time ^a (ns)	40	73	60	30 6	650 0.9	30	17	570 24	20	1.8	
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.1	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0	

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO

d. At room temperature (20°C)

#. Softening point

Pure CsI and the fast component of BaF₂ provide similar LO The slow component of BaF₂ provides much high LO

3

🛠 Fermilab

BaF₂ Scintillation Light

Fast at 220 nm: 0.9 ns, Slow at 300 nm: 600 ns

Mu₂e

BGRI/Incrom/SIC BaF₂ Samples

ID	Vendor	Dimension (mm ³)	Polishing		
SIC 1-20	SICCAS	30x30x250	Six faces		
BGRI-2015 D, E, 511	BGRI	30x30x200	Six faces		
Incrom 2, 3	Incrom	30x30x200	Six faces		

Mu2e

5

R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

7/27/2015

🛠 Fermilab

Comparison of BaF₂ Optical Properties

6

Comparison of BaF₂ EWLT

BGRI and Incrom consist; 20 cm samples is better than 25 cm samples

7/27/2015

7

Setup for LO & LRU Measurements

Pulse Height Spectra: BGRI 511

50 ns: ER = 35.6%

Mu2e

9

CMS LRU Spec for Tapered Crystal

D. Graham & C. Seez, CMS Note 1996-002

Front Slope and Back Rise

R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

11

LO & LRU of BGRI 511 BaF₂ Sample

50 ns: 169 p.e./MeV

2.5 μs: 750 p.e./MeV

Mu2e

12

7/27/2015

🔁 Fermilab

Summary: Initial BaF₂ Properties

ID	Ave of 20 SIC Crystals	Ave of 3 BGRI	Ave of 2 Incrom
Dimension	30x30x250	30x30x200	30x30x200
T@220 nm (%)	85.5±0.2	87.7±0.2	85.0±0.2
T@300 nm (%)	91.3±0.2	92.3±0.2	92.2±0.2
EWLT of Fast Component (%)	86.1±0.2	88.8±0.2	86.8±0.2
EWLT of Slow Component (%)	91.1±0.2	91.8±0.2	92.4±0.2
LO 50 ns Gate (p.e./MeV)	119±1	139±1	139±1
Back Rise 50 ns Gate (%)	-38.4±2.5	-16.8±2.5	-25.4±2.5
δ _F 50 ns Gate (%/X ₀)	-1.4±0.5	0.2±0.5	-1.2±0.5
RMS 50 ns Gate (%)	13.6	5.1	9.0
LO 2500 ns Gate (p.e./MeV)	562±6	730±7	646±7
Back Rise 2500 ns Gate (%)	-28.1±2.5	-14.1±2.5	-17.6±2.5
δ _F 2500 ns Gate (%/X ₀)	-0.2±0.5	0.3±0.5	-0.4±0.5
RMS 2500 ns Gate (%)	9.3	4.1	5.9

Mu_{2e}

BaF₂ LO & LRU: Different Wrapping

Mu2e

7/27/2015

🚰 Fermilab

Incrom BaF₂ - Light Output (INFN)

Incrom BaF₂ – Normalized LRU (INFN)

R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Effect of Crystal Wrapping for BaF₂

The highest LO is observed with 8 layer Teflon wrapping

Reflectance Measurements

	Thickness					
Sample ID	μm)	Hitachi U3210 UV/Vis Spectrophotometer Large Sample Compartment				
Al Foil	15	Reference beam				
Al Mylar	10					
ESR	65	PMT at the bottom window				
Steel Foil	50	Integrating sphere				
Tyvek	150	Measurement beam				
Teflon ×3	25×3	$\theta = 10^{\circ}$				
Teflon ×5	25×5					
Teflon ×8	25×8					

Mu2e

7/27/2015

🛟 Fermilab

Radiation Damage in Wrapping Materials (I)

Both Al foil and Teflon film are good for Mu2e

19 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Radiation Damage in Wrapping Materials (II)

BaF₂: No Damage Recovery

Damage in BaF₂ does not recover, so is dose rate independent

21 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

LT : BGRI 511 & Incrom 2 BaF, Samples

Radiation induced absorption is affected by raw materials and processing

22 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

LO & LRU: Incrom 2 BaF₂ Sample

50 ns: 133 to 84 p.e./MeV 2.5 μs: 628 to 333 p.e./MeV Incrom 2 30×30×200 mm³ R2059, Grease, Tyvek wrapped BaF, Incrom 2 30×30×200 mm³ PMT:R2059, Grease, Tyvek wrapped 1.5 Before IR Before IR 1 Back Rise = (-25.6±2.6)% δ_F = (-1.4±0.5)%/X₉ RMS=9.1 % Average L.O, = 133 p.e./MeV (Gate=50 ns) Back Rise = (-18.0±2.6)% δ_F = (-0.8±0.5)%/X Average L.O, ∓ 628 p.e./MeV, (Gate=2500 ns) 0.5 0.5 1.5 IR 10³ rad IR 10³ rad 1.5 Normalized Light Output Normalized Light Output Back Rise = $(-32.5\pm2.6)\%$ $\delta_{F} = (-1.6\pm0.5)\%/X$ Average L.O. ± 130 p.e./MeV (Gate=50 ns) Back Rise = $(-23.9\pm2.6)\%$ $\delta_{F} = (-0.7\pm0.5)\%/X_{n}$ RMS=8.1 % (Gate=2500 րş) 0.5 0.5 veràge L.O. 7 57 IR 10⁴ rad IR 10⁴ rad 1.5 Back Rise = (-66.6±2.9)% δ_F = (-4.5±0.5)%/X <u>Average L.O.</u> = 84 p.e./MeV Back Rise = (-52.5±2.8)% δ_F = (-2.5±0.5)%/X Average L O, - 341 p.e./M RMS=18.7 % p.e./MeV. (Gate=2500 ns). RMS=25.5 % (Gate=50 ns) 0.5 0.5 IR 10⁵ rad IR 10⁵ rad 1.5 Back Rise = $(-66.9\pm2.9)\%$ $\delta_{F} = (-4.5\pm0.5)\%/X_{0}$ Back Rise = $(-52.5\pm2.7)\%$ $\delta_{F} = (-2.5\pm0.5)\%/X_{o}$ RMS=25.2 % RMS=18.7 % (Gate=2500 ns) 0.5 0.5 Gate=50 ns) eràge L.O. = 84 veràge L.O p.e./Me IR 10⁶ rad 1.5 IR 10⁶ rad 1.5 1 Back Rise = $(-62.4\pm2.9)\%$ $\delta_{F} = (-4.1\pm0.5)\%/X_{0}$ Back Rise = $(-49.9\pm2.7)\%$ $\delta_{F} = (-2.3\pm0.5)\%/X_{B}$ RMS=24.6 % 0.5 RMS=17.7 % 0.5 /eràge_L.O. ′= 84 ′b.e./MeV (Gate=50 ns) verage L O '= 3 p e /MeV (Gate=2500 ns) 20 140 160 180 200 20 180 200 140 Distance from the end coupled to PMT (mm) Distance from the end coupled to PMT (mm)

23 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Mu₂e

7/27/2015

🔁 Fermilab

Normalized EWLT & LO: All BaF, Samples

Consistent performance observed in crystals from three vendors

R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage 24

Two Cf-252 Neutron Source Pairs

25 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Small LT Loss in Both BaF₂ Samples

26 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

LO & LRU: Incrom 3 BaF₂ Sample

50 ns: 145 to 133 p.e./MeV

2.5 μs: 663 to 613 p.e./MeV

Normalized EWLT & LO: Both BaF₂ Samples

Taking out y-ray background, neutron induced damage is negligible

BaF₂, Incrom 02 - Irradiation at FNG (INFN)

- > 300 MeV deuteron beam on tritiated target
- Isotropic 14 MeV neutrons
- > Max neutron flux = 0.5×10^{11} n/s close to target
- > Radius dependence $\rightarrow 1/R^2$
- Neutron intensity selected moving the crystal position in the test area

Summary: BaF₂

- 20 cm samples from BGRI and Incrom show better optical and scintillation properties than 25 cm SIC crystals.
- Both fast and slow scintillation components from all vendors show sufficient LO, and require photodetectors with selective or extended UV response respectively.
- Consistent γ-ray induced radiation damage is observed in recent BGRI and Incrom samples as compared to the SIC 2013 sample and samples grown 20 year ago.
- Improvement in BGRI samples is observed by controlling oxygen contamination: quality control required for production.
- Neutron induced radiation damage in BaF₂ is negligible as compared to the ionization dose.
- SICCAS decided to pursue non-vacuum growth. The first batch of two samples is to be evaluated.

Normalized EWLT & LO: BGRI BaF₂

Kharkov/SIC CsI Samples

ID	Vendor	Dimension (mm ³)	Polishing		
SIC13	SICCAS	50x50x300	Six faces		
Kharkov 1 and 3	BGRI	29x29x230	Six faces		

32 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Mu₂e

LT of 23 cm long Kharkov Csl

33 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

LT of 30 cm long SIC Csl

Low EWLT because of long path length and surface quality

Pulse Height Spectra: Kharkov 1 Csl

Ave ER= 40.3%

Ave ER= 40.3%

7/27/2015

35 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

LO, LRU and Decay of Kharkov 1 Csl

Consistent uniformity & 30 ns decay time observed

36 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Summary: Initial Csl Properties

No correlations between LO and LT because of variations of surface quality

ID	Kharkov 1	Kharkov 3	SIC 13
Dimension (mm ³)	29x29x230	29x29x230	50x50x300
EWLT (%)	47.6	49.2	24.6
Ave ER (%)	40.3	42.0	44.3
LO@200 ns Gate (p.e./MeV)	104	98	83
LRU (%)	-6.7±1.1	-2.9±1.1	3.1±1.0
RMS (%)	4.1	2.7	1.7
Decay Time (ns)	30	29	27

Result measured at Caltech is consistent with what measured at INFN

Mu2e

37 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

7/27/2015

🚰 Fermilab

Csl Crystal Characterization @ INFN (1)

- CsI crystals characterized for LY and LRU also at INFN with similar Na²² test with WFD readout
- SICCAS, Kharkov and Opto Material (Italy) crystals characterized

🗖 🛟 Fermilab

Csl Crystal Characterization @ INFN (2)

- Measurements done with Kharkov and SICCAS crystals agree
- τ of 30 ns measured looking at integrated charge with a moveable gate w.r.t. +6+20 ns in our fit
- No long/slow component observed (or practically negligible)

7/27/2015

39 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Mu₂e

No Recovery at Emission: SIC2013 Csl

Radiation Damage: Kharkov 1 Csl

No significant degradation in LO and LRU up to 10 krad

41 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Normalized EWLT & LO: All CsI Samples

Consistent radiation hardness: no significant degradation in LO and LRU up to 100 krad.

CsI: LT, LO & LRU Loss by Neutrons

No significant damage in LT/LRU, LO increase by phosphorescence

Phosphorescence: 0.6 & 0.8 MeV

44 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Phosphorescence from Cs-134

γ-rays from neutron irradiated CsI have energies of 0.6 and 0.8 MeV.

No long lifetime (> hour) radioactive isotopes generated via neutron capture by F-19, I-127 and Ba-138.

Cs-133 has large neutron capture x-section: 30b. Cs-134 emits in average
2.23 γ-rays with mean energy of 0.7 MeV and a half-life of 2.1 year.

An early observation is published in Phys. Stat. Sol. Vol.167, p. 253, 1998.

Gamma Emissions from Caesium-134					
Energy (MeV)	Yield per Transformation				
0.475	0.015				
0.563	0.084				
0.569	0.154				
0.605	0.976				
0.796	0.854				
0.802	0.087				
1.039	0.010				

Result measured at Caltech is consistent with INFN data

Mu2e

Csl (Opto Materials & Kharkov) at FNG

- Neutrons at FNG, ENEA
- Up to 9 x 10¹¹ n/cm²
- No large variation in LY
- SICCAS deterioration in LRU

Csl, Neutron Irradiation at FNG

- Neutrons at FNG, ENEA \succ
- Up to 9 x 10¹¹ n/cm²
- No large variation in LY

CsI: OPTO MATERIALS

1.2

1.15

1.1

1.05

0.95

0.9

0.85F

0.8

2

4

6

8

LY / LY(10cm)

N

SICCAS deterioration in LRU

OPTOM Cs

Before

After 5x10¹¹ n/cm²

After 3x10¹¹ n/cm²

47 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

10

12

14

Summary: Pure Csl

- LT Measurements for CsI crystals suffer from uncertainties caused by crystal's soft and hygroscopic surface.
- Pure CsI from both Kharkov and SICCAS show sufficient light output with emission peaked at 310 nm requiring UV extended photodetectors.
- Consistent radiation hardness against ionization dose is observed for crystals from Kharkov and SICCAS.
- Neutron induced phosphorescence requires further investigation to understand its consequence to the readout noise. <u>http://www.hep.caltech.edu/~zhu/talks/liyuan_091028_N32-4.pdf</u>.
- Quality control is required to control slow scintillation caused by contamination and radiation hardness.

Mu2e

Conclusion

- A calorimeter utilizing the fast scintillation component of barium fluoride meets the Mu2e baseline requirements.
- Both the fast component of BaF₂ and pure CsI provide sufficient light, and can survive the total radiation dose of 100 krad and 10¹² n/cm² expected by the Mu2e experiment.
- Commercial vendors are available for both crystals with adequate cost.
 CsI is somewhat less expensive.
- The sub-ns fast scintillation component in BaF₂ promises a very fast calorimeter to face the challenge of high event rate expected in future HEP experiments at the intensity frontier.
- BaF₂ also offers a slow scintillation component with 600 ns decay time, which may be used to pursue a novel calorimeter of dual readout: with fast and slow components readout by two individual photodetectors for fast timing/trigger and precision energy.

🔁 Fermilab

7/27/2015

• In a brief summary, BaF2 provides more potential but is also more challenging.

Mu2e

LT of Incrom BaF₂

Approaching theoretical limit at long wavelengths Intrinsic absorption below 230 nm observed

Comparison of Transmittance

20 cm long crystals have better transmittance than 25 cm samples

Pulse Height Spectra: Incrom 2

50 ns: ER = 41.2%

2.5 μs: ER = 17.1%

52 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Pulse Height Spectra: Incrom 3

50 ns: ER= 38.2%

2.5 μs ER= 16.8%

53 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

7/27/2015

🛠 Fermilab

LO & LRU of Incrom 2

Gate: 50 ns

Gate: 2500 ns

LO & LRU of Incrom 3

Gate: 50 ns

Gate: 2500 ns

Comparison of Light Output

20 cm long crystals have better light output than 25 cm samples

56 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Comparison of Front Slope

20 cm long crystals have smaller front slope than 25 cm samples

Comparison of Back Rise

58

20 cm long crystals have smaller back rise than 25 cm samples

R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

🛠 Fermilab

Summary of BaF₂ Wrapping

	Fast LO (p.e./MeV)	LO: 50 ns (p.e./MeV)	RMS 50 ns (%)	δ _F 50 ns (%/X₀)	R _B 50 ns (%)	Slow LO (p.e./MeV)	LO: 2.5 µs (p.e./MeV)	RMS 2.5 μs (%)	δ _F 2.5 μs (%/X ₀)	R _B 2.5 µs (%)
Al Foil (4)	126	131	16.8	-2.0	-44.8	563	579	8.5	-0.3	-25.9
Al Mylar (2)	129	148	10.7	-0.9	-30.4	597	644	5.6	0	-17.3
ESR (2)	119	130	11.0	-1.4	-30.2	467	525	5.0	-0.4	-15.1
Teflon (3)	117	117	21.0	-0.5	-63.5	615	567	12.9	1.2	-43.6
Teflon (3) +Al Foil (2)	119	125	20.4	-0.8	-61.9	701	645	12.2	0.3	-39.0
Teflon (5)	123	135	18.3	-0.9	-53.5	736	706	9.7	0.3	-32.0
Teflon (5) +Al Foil (2)	123	135	17.9	-1.1	-52.8	775	741	13.0	-1.2	-37.6
Teflon (8)	167	172	20.7	-2.0	-58.2	837	788	13.0	-1.2	-37.9
Teflon (8) +Al Foil (2)	165	178	20.6	-2.2	-58.6	839	788	13.1	-1.3	-36.8
Teflon Plate	118	125	18.2	-1.1	-53.1	614	574	12.1	0.5	-39.4
Tyvek (2)	119	130	14.4	-1.6	-39.8	591	586	9.4	-0.1	-29.6

Mu2e

59 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Fermilab

LO & LRU: BGRI 511

Gate: 50 ns

7/27/2015

Gate: 2500 ns

LO & LRU: SIC-1

50 ns

Neutron effect is small up to 10¹¹ n/cm²

2500 ns

Pulse Height Spectra: Kharkov 3

Ave ER= 42.0%

Ave ER= 42.4%

Pulse Height Spectra: SIC 13

Ave ER=44.3%

Ave ER=44.3%

LO, LRU and Decay of SIC13

Non-uniformity and 27 ns decay time observed

64 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

LO, LRU and Decay of Kharkov 3

Non-uniformity and 30 ns decay time observed

65 R.-Y. Zhu - Crystals: Optical and Scintillation Properties, Radiation Damage

Radiation Damage: SIC2013

No significant degradation in LO and LRU up to 10 krad

