

Mu2e CD-2 Review 475.07.02 Crystals

Ren-Yuan Zhu Caltech

Introduction

- Because of four times increase of the Lu₂O₃ price in the last four years, the price of LYSO crystals reaches \$40/cc in the market, which is prohibitive for the Mu2e experiment.
- Using the sub-ns fast scintillation component, a very fast BaF₂ crystal calorimeter is base-lined to face the challenge of high event rate expected by the Mu2e experiment.
- Historically, a BaF₂ crystal calorimeter was built by the TAPS experiment at Germany, which provides an energy resolution of 0.79%/0.59% stochastic term and 1.8%/1.9% constant term for the fast/slow component with R2059 PMT readout. R. Novotny, Nucl. Phs. 61B (1998)137-142.
- The intrinsic slow component of 600 ns decay time, however, is to be suppressed.

Fast Inorganic Crystal Scintillators for HEP

	LSO/LYSO	GSO	YSO	Csl	BaF ₂	CeF ₃	CeBr ₃	LaCl₃	LaBr₃	Plastic scintillator (BC 404) ^①	
Density (g/cm ³)	7.4	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03	
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#	
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.7	1.96	96 2.81 1.88		42.54	
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.1	2.41	2.97	2.97 3.71 2.85		9.59	
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	31.5 37.6 3		78.8	
Z value	64.8	57.9	33.3	54	51.6	50.8	45.6	47.3 45.6		5.82	
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.9	2.02	
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408	
Refractive Index^b	1.82	1.85	1.8	1.95	1.5	1.62	1.9	1.9 1.9		1.58	
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	99	15 49	153	35	
Decay Time ^a (ns)	40	73	60	30 6	650 0.9	30	17	570 24	20	1.8	
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.1	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0	

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO

d. At room temperature (20°C)

#. Softening point

Mu2e

1. http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx

http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html

BaF₂ Scintillation Light

Fast at 220 nm: 0.6 ns, Slow at 300 nm: 600 ns

Mu₂e

Slow Suppression by Doping and Readout

Y or La doping is effective in improving the F/S ratio for $Ba_{0.9}R_{0.1}F_2$ powders

B.P. SOBOLEV et al., "SUPPRESSION OF BaF2 SLOW COMPONENT OF X-RAY LUMINESCENCE IN NON-STOICHIOMETRIC Ba0.9R0.1F2 CRYSTALS (R=RARE EARTH ELEMENT)," Proceedings of The Material Research Society: Scintillator and Phosphor Materials, pp. 277-283, 1994.

Solar blind cathode is also effective. R&D on doping will be carried out in 2015.

Z. Y. Wei, R. Y. Zhu, H. Newman, and Z. W. Yin, "Light Yield and Surface-Treatment of Barium Fluoride-Crystals," *Nucl Instrum Meth B*, vol. 61, pp. 61-66, Jul 1991.

5

🛟 Fermilab

Twenty BaF₂ Crystals from SIC

Sample ID	Sample ID Received Date		Total #	Polish
SIC-1,20	4/25/2014	30× 30 × 250	20	Six surfaces

Properties measured: longitudinal transmittance, FWHM resolution for 511 keV y-rays, decay kinetics and light response uniformity.

Mu₂e

🚰 Fermilab

Longitudinal Transmittance (LT)

Good transmittance approaching theoretical limit

Summary: Emission Weighted LT

Consistency of 3.6% and 1.4% respectively for fast and slow component

Pulse Height Spectra with ²²Na Source

2.5 µs gate sees 2.3 times better resolution than 50 ns gate

Average ER = 41.7% with 50 ns gate

Summary: FWHM Energy Resolution

Consistency of 5.9% and 5.6% respectively for 50 ns and 2.5 µs gate

Decay Kinetics for BaF₂ Wrapped with Tyvek

Consistent fast and slow scintillation component observed

Summary of Fast and Total Light Output

7.5% consistency observed

12 Ren-Yuan Zhu - DOE CD-2/3b review

^{10/22/14}

Correlations: Slow versus Fast Components

Positive correlations observed

Correlations: Resolution versus LO

Negative correlations observed

Summary: Decay Time of Slow Component

Consistency of 1.3% observed for decay time of the slow component

Mu₂e

🚰 Fermilab

Light Response Uniformity Measurements

Light output and FWHM energy resolution (see report dated 6/25/14) are measured at seven points along the crystal

► X

 Mu2e

 16
 Ren-Yuan Zhu - DOE CD-2/3b review

10/22/14

X mid

No Difference between Coupling Ends

SIC1: No difference with alternative ends coupled to the PMT

17 Ren-Yuan Zhu - DOE CD-2/3b review

Muze

10/22/14

🛠 Fermilab

Light Response Uniformity (50 ns)

Light Response Uniformity (2.5 µs)

Summary: δ values of the Simple Linear Fit

22/14% negative slope observed for 50 ns/2.5 µs gate

20 Ren-Yuan Zhu - DOE CD-2/3b review

Summary: rms of LO at 7 points

14/9% observed for 50 ns/2.5 µs gate

Light Response Uniformity Specification

D. Graham & C. Seez, CMS Note 1996-002

Front Slope and Back Rise

Front Slope: Too Large for Fast Component

1.4% & 0.2% per X₀ observed for fast & slow components

Back Rise: Too Large for both Fast and Slow

38% and 28% observed for fast and slow components

25 Ren-Yuan Zhu - DOE CD-2/3b review

Effect of Crystal Wrapping

The highest LO is observed with 8 layer Teflon wrapping

Summary of Crystal Wrapping

	Fast LO (p.e./MeV)	LO: 50 ns (p.e./MeV)	RMS 50 ns (%)	δ _F 50 ns (%/X ₀)	R _B 50 ns (%)	Slow LO (p.e./MeV)	LO: 2.5 µs (p.e./MeV)	RMS 2.5 μs (%)	δ _F 2.5 μs (%/X ₀)	R _B 2.5 µs (%)
Al Foil (4)	126	131	16.8	-2.0	-44.8	563	579	8.5	-0.3	-25.9
Al Mylar (2)	129	148	10.7	-0.9	-30.4	597	644	5.6	0	-17.3
ESR (2)	119	130	11.0	-1.4	-30.2	467	525	5.0	-0.4	-15.1
Teflon (3)	117	117	21.0	-0.5	-63.5	615	567	12.9	1.2	-43.6
Teflon (3) +Al Foil (2)	119	125	20.4	-0.8	-61.9	701	645	12.2	0.3	-39.0
Teflon (5)	123	135	18.3	-0.9	-53.5	736	706	9.7	0.3	-32.0
Teflon (5) +Al Foil (2)	123	135	17.9	-1.1	-52.8	775	741	13.0	-1.2	-37.6
Teflon (8)	167	172	20.7	-2.0	-58.2	837	788	13.0	-1.2	-37.9
Teflon (8) +Al Foil (2)	165	178	20.6	-2.2	-58.6	839	788	13.1	-1.3	-36.8
Teflon Plate	118	125	18.2	-1.1	-53.1	614	574	12.1	0.5	-39.4
Tyvek (2)	119	130	14.4	-1.6	-39.8	591	586	9.4	-0.1	-29.6

10/22/14

Fermilab

Summary: Light Response Uniformity

- Light response uniformity was measured for all twenty BaF₂ crystals wrapped with two layers of Tyvek paper.
 - No change of LRU when the crystal end coupled to PMT is altered.
 - An overall negative slope of 22% & 14% (rms of 14% & 9%) was observed for 50 ns & 2.5 µs gate, indicating absorption dominance.
 - An alternative fit with two segments shows $1.4\%/X_0 \& 0.2\%/X_0$ slope in the front 13 cm and 38% & 28% rise in the back 12 cm for 50 ns & 2.5 µs gate.
- R&D is needed to improve LRU of BaF₂ crystals after the choice of the UV-effective wrapping material is made.
 - Design longitudinal tunable reflection, such as painting black strips on the wrapping material.
 - Ray-tracing simulation will help the tuning: need to understand the reflectance of UV light.

28 Ren-Yuan Zhu - DOE CD-2/3b review

Mu2e

Reflectance Measurements

Sample ID	Thickness (μm)				
Al Foil	15				
Al Mylar	10				
ESR	65				
Steel Foil	50				
Tyvek	150				
Teflon ×3	25×3				
Teflon ×5	25×5				
Teflon ×8	25×8				

Properties measured at room temperature:

Reflectance as a function of wavelength

Ren-Yuan Zhu - DOE CD-2/3b review 29

Mu₂e

Set-up for Reflectance Measurements

Large Systematic Uncertainties for DUV

RMS values extracted from ten repeated measurements for 8 layers of Teflon films:

<1% with λ longer than 250 nm; and Up to 15% with λ shorter than 250 nm.

Normalized Reflectance relative to BaSO₄

BaSO₄ is the coating material used in the integrating sphere

EWRR : Emission weighted relative reflectance $EWRR = \int em(\lambda) \cdot reflectance(\lambda) d\lambda / \int em(\lambda) d\lambda$

Light Output versus Reflectance

Positive correlations observed

Mu2e

Radiation Damage in Wrapping Materials (I)

Aluminum foil is the best reflector up to 100 Mrad

Mu2e

Radiation Damage in Wrapping Materials (II)

BaF₂: y-ray Induced Radiation Damage (I)

Experiments

- Three BaF₂ samples from two vendors were investigated
- Damage does not recover at room temperature
- All samples went through y-ray irradiation @ 30 and 7k rad/h to reach 100, 1k,10k,100k and 1M rad
- Properties measured: LT, EWLT for fast/slow components, LO, decay time and LRU

BaF₂: y-ray Induced Radiation Damage (II)

BaF₂: y-ray Induced Radiation Damage (III)

Damage in BaF2 does not recover at RT, so is not dose rate dependent

38 Ren-Yuan Zhu - DOE CD-2/3b review

BaF₂: y-ray Induced Radiation Damage (IV)

39 Ren-Yuan Zhu - DOE CD-2/3b review

BaF₂: y-ray Induced Radiation Damage (V)

Mu2e

BaF₂: Fast Neutron Induced Damage

Samples were placed at 8 cm from two sources Neutron flux at crystal surface is 5×10^4 cm⁻² s⁻¹

Two Cf-252 sources of 14.6 µg each was procured recently for crystal irradiation

Mu2e

A Few Percent Loss in both LT and LO

No Effect on LRU

Fast Component

Slow Component

Mu2e

Summary: Fast Neutron Induced Damage

The maximum yearly neutron fluence is 2.5 and 8 x 10¹⁰ n/cm² for disk 0 and 1.

The radiation damage effect caused by fast neutron is smaller than γ -rays.

Mu2e

Summary

- With the fast component of sub-ns decay time BaF₂ crystals promise a very fast calorimeter for the Mu2e experiment.
- BaF₂ crystals from SICCAS show adequate optical quality and consistency.
- Radiation hardness of existing BaF₂ crystals against γ-rays and fast neutrons seems adequate for the Mu2e experiment.
- Two R&D issues are identified to further improve the quality of BaF₂ crystals.
 - LRU at 22% needs to be improved by controlled wrapping longitudinally.
 - The pile-up effect caused by the slow scintillation component needs to be mitigated by selective doping (in project), and/or selective readout. See David's Talk for solar-blind APD.

BaF₂: y-ray Induced Radiation Damage

46 Ren-Yuan Zhu - DOE CD-2/3b review