

y-Ray Induced Radiation Damage in BaF₂, CeF₃, CsI and LSO/LYSO Crystals

Ren-Yuan Zhu

California Institute of Technology

May 28, 2014

CMS Shashlik Working Group Meeting

Candidate Fast Crystals

Talk in CMS Forward Calorimetry Task Force Meeting, CERN, June 27, 2012

	LSO/LYSO	GSO	YSO ^①	Csl	BaF ₂	CeF ₃	CeBr ₃ 2	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) ⁹
Density (g/cm ³)	7.40	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.70	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.10	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54.0	51.6	50.8	45.6	47.3	45.6	-
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.90	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.80	1.95	1.50	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	141	15 49	153	35
Decay Timeª (ns)	40	73	60	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.3	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO http://scintillator.lbl.gov/

d. At room temperature (20°C)

#. Softening point

1. N. Tsuchida et al *Nucl. Instrum. Methods Phys. Res. A*, 385 (1997) 290-298 http://www.hitachi-chem.co.jp/english/products/cc/017.html

 W. Drozdowski et al. *IEEE TRANS. NUCL. SCI*, VOL.55, NO.3 (2008) 1391-1396 Chenliang Li et al, *Solid State Commun*, Volume 144, Issues 5–6 (2007),220–224
http://scintillator.lbl.gov/

3. <u>http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx</u> <u>http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html</u>

Radiation Damage in Long BaF₂ Crystals

Experiments

- Three BaF₂ samples from two vendors were investigated
- Damage does not recover at room temperature
- All samples went through y-ray irradiation @ 30 and 7k rad/h to reach 100, 1k,10k,100k and 1M rad
- Properties measured: LT, EWLT for fast/slow components, LO, decay time and LRU

Initial EWLT, LO and Decay Time

All crystals have good transmittance approaching theoretical limit A strong absorption band peaked at 290 nm observed in BGRI2012

No Recovery, No Dose Rate Dependence

Damage in BaF2 does not recover at RT, so is not dose rate dependent

May 28, 2014 Talk given in CMS Shashlik Working Group Meeting by Ren-Yuan Zhu, Caltech

SIC-2012: EWLT, LO and Decay Time

Damage in both LT and LO saturated after a few tens of krad, Indicating limited defect density in the crystal

May 28, 2014 Talk given in CMS Shashlik Working Group Meeting by Ren-Yuan Zhu, Caltech

Damage in EWLT/LO and RIAC

Damage in both EWLT and LO saturates after a few tens of krad at a level of less than 40% for the fast component. Slow component is more radiation hard than the fast component

May 28, 2014 Talk giver

Radiation Damage in Long CeF₃ Crystals

Vendor	ID	Dimension (mm ³)	Received Data	Polish
SIC	SIC2014	$33 \times 32 \times 191$	2/10/2014	All faces
Optovac	CeF ₃ -15	$22^2 \times 26^2 \times 150$	In nineties	All faces

Experiments

- Two CeF₃ samples from different vendors were investigated
- Damage recovers at room temperature
- All samples went through y-ray irradiation @ 2, 8, 30 and 7k rad/h step by step until equilibrium
- Properties measured: LT, EWLT, LO, decay time and LRU

Emission, LT and EWLT

Emission spectra across absorption edge indicating strong self-absorption Both samples have poor transmittance with absorption band & scattering centers

Damage Recovery Observed

Damage in CeF_3 recovers, so is dose rate dependent

Consistent recovery time constants in two CeF₃ samples from different vendors

Normalized EWLT & LO

Dose rate dependent damage in both EWLT and LO observed

SIC2014: EWLT, LO and Decay Time

About 40% loss observed in both EWLT and light output at 7,062 rad/h

Damage in EWLT/LO and RIAC

RIAC of >3 m⁻¹ observed at 7 krad/h worse than CMS PWO

Radiation Damage in Long Csl Crystals

CsI SIC1	3		SIC2011
Sample ID	Received Date	Dimension (mm ³)	Polish
Csl SIC13	2/28/2013	$50\times50\times300$	Six faces
SIC2011	8/20/2011	Ф40×50	Two face (Ф40 faces)

Experiments

- Two CsI samples from SIC are compared to samples from Kharkov
- Damage does not recover at room temperature
- All samples went through y-ray irradiation @ 30 and 7k rad/h to reach 100, 1k,10k,100k and 1M rad
- Properties measured: LT, EWLT, LO, decay time and LRU

No Recovery of Radiation Damage

Damage does not recover, so is dose rate independent

May 28, 2014 Talk given in CMS Shashlik Working Group Meeting by Ren-Yuan Zhu, Caltech

SIC2013: EWLT, LO and Decay Time

No saturation observed up to 1 Mrad, indicating high defect density in the crystal

Damage in EWLT/LO and RIAC

RIAC larger than 3 m⁻¹ observed after 1 Mrad Consistent performance between CsI crystals from SIC and Kharkov $(\lambda_{em} = 310$ nm) Csl SIC2013 Normalized EWLT Csl SIC2011 $(\lambda_{em} = 310 \text{nm})$ 0.8 Csl-3 Ref $(\lambda_{em} = 310 \text{nm})$ RIAC at Emission peak (m⁻¹) 0.6 Induced absorption ~3 m⁻¹ after 1 Mrad 0.4 Csl SIC2013 50×50×300 mm³ 0.2 Csl SIC2011 Φ 40×50 mm³ 0 Normalized LO 0.8 0.6 0.4 Csl SIC2013 50×50×300 mm³ 0.2 Csl SIC2011 Φ 40×50 mm³ Csl-3 40×40×200 mm³ (Ref) Csl-4 50×50×190 mm³ (Ref) 0 10⁶ 10⁵ 10² 104 10⁵ 10^{2} 10^{7} 10^{4} 10^{3} 10^{6} 10^{7} Integrated Dose (rad) Integrated Dose (rad) Data of Kharkov crystals: Nucl. Ins. Meth. A 326 (1993)

Radiation Damage in Long LSO/LYSO

CPI-LYSO-L	
CTI-LSO-L	
SG-LYSO-L	
SIC-LYSO-L	
SIPAT-LYSO-L	
Silagi segen isii iz	13 14 15 16 17 18 19 20 21 1

Sample ID	Dimension (mm ³)	Polish
CPI-LYSO-L	$25 \times 25 \times 200$	Six faces polished
CTI-LSO-L	$25 \times 25 \times 200$	Six faces polished
SG-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SIC-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SIPAT-LYSO-L	$25 \times 25 \times 200$	Six faces polished

Experiments

- Five LSO/LYSO samples from five vendors were investigated
- Damage does not recover at room temperature
- All samples went through γ-ray irradiation @ 30 and 7k rad/h to reach 100, 1k,10k,100k and 1M rad
- Properties measured: LT, EWLT, LO, decay time and LRU

Excellent Radiation Hardness in LT

Consistent & Small Damage in LT

Larger variation @ shorter λ

Excellent Radiation Hardness in LO

Damage in 2 x 2 x 0.5 cm Plates

5 mm thick LYSO plates show degradation of a few percepts up to 10 Mrad

Summary: Dose Rate Independent Crystals

RIAC of LYSO is about 1 m⁻¹ after 10 Mrad BaF_2/CsI is good at high/low dose

A Comparison of RIAC

Crystals with dose rate independent damage: LYSO is the best after 10 Mrad Crystals with dose rate dependent damage: BGO is the best at 7 krad/h

May 28, 2014 Talk given in CMS Shashlik Working Group Meeting by Ren-Yuan Zhu, Caltech

Summary

 BaF_2 , CeF_3 and pure CsI have fast light, but are significantly radiation softer than LSO/LYSO. RIAC of about 1 m⁻¹ is observed for LYSO crystals after 10 Mrad.

Because of low defect density in crystals radiation damage in BaF_2 is saturated beyond 10 krad, promising a stable detector at high integrated dose. RIAC of the fast component may be controlled to less than 1.6 m⁻¹.

Damage in CeF_3 recovers at room temperature, so is dose rate dependent. The quality of the large size CeF_3 crystals tested is worse than PWO and much worse than BGO among crystals with dose rate dependent radiation damage. Significant R&D effort is needed for future HEP calorimeter applications.

Radiation damage in pure CsI is small at low dose, but shows no saturation at high dose, indicating high defect density.

Plan for Radiation Damage Study

To meet the milestones required for the CMS Phase 2 endcap calorimeter upgrade decision the following irradiation is planned in 2014.

- Test Shashlik LYSO plates of 1.4 x 1.4 x 0.15 mm by using various irradiation facilities for electrons, neutrons and protons in Brad's plan.
- Test LYSO and other fast crystals of large size by using γ-rays from the 26k curie Co-60 source at the JPL TID Facility up to 150 Mrad with dose rate up to 1 Mrad/h.
- Test LYSO and other fast crystals of large size by using 800 MeV proton beam at LANL up to 10¹⁵ p/cm² with flux of up to 10¹¹/cm²/s.