



# Characterization of Three LYSO Crystal Batches

#### Fan Yang, Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu

### California Institute of Technology April 11, 2014

Talk in the XVI International Conference on Calorimetry in Particle Physics, Giessen



## Introduction



- Three LYSO crystal batches were characterized at Caltech crystal laboratory for future HEP experiments:
  - Twelve 13 cm long crystals for the Mu2e experiment;
  - Twenty-five 20 cm long crystals for the SuperB experiment; and
  - 623 plates of 14 x 14 x 1.5 mm with five holes for the LYSO/W Shashlik beam test at Fermilab.
- Properties measured : Longitudinal Transmittance (LT), Light Output (LO), FWHM Energy Resolution (ER) and Light Response Uniformity (LRU).
- Correlations between optical and scintillation properties were investigated.





| ID              | Dimension<br>(mm <sup>3</sup> ) | Polish    | Amount |
|-----------------|---------------------------------|-----------|--------|
| SIC-<br>1 to 10 | 30 × 30 × 130                   | All faces | 10     |
| SIC-11,12       | Hexagon 18.6× 130               | All faces | 2      |

### Ten square & two hexagonal



| Vender          | Dimension<br>(mm³)                    | Polished  | Amount |
|-----------------|---------------------------------------|-----------|--------|
| Saint<br>Gobain | 20 <sup>2</sup> ×23 <sup>2</sup> ×200 | All faces | 12     |
| SIC             | 20 <sup>2</sup> ×23 <sup>2</sup> ×200 | All faces | 3      |
| SIPAT           | 20 <sup>2</sup> ×23 <sup>2</sup> ×200 | All faces | 10     |



### LT and EWLT



EWLT (*emission weighted longitudinal transmittance*):

 $EWLT = \frac{\int LT(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$ 



LT approaches the theoretical limit, indicating good optical quality



# Summary of LT @ 420 nm



### LT@ 420 nm better than 75% specification Consistent LT between square and hexagon





### **Summary of EWLT**



### Consistent EWLT of square and hexagonal crystals



# LO & FWHM: by R1306 PMT





Sample wrapped by two layers of Tyvek paper

One end coupled to

Hamamatsu R1306 PMT or 2 x Hamamatsu S8664-55 APD

With DC-200 grease coupling

200 ns integration gate Coincidence trigger from a Na-22 source



γ rays

# Light output and FWHM energy resolution are measurement at seven points



# **Pulse Height Spectra**





### FWHM resolution better than 12.5% specification



# **Summary of Light Output**

Divergence of LO < 6% observed. Saint-Gobain crystals have the best consistency at 3%. Square samples seem having higher LO than hexagonal ones, which is to be further investigated.





## **Summary of FWHM Resolution**



#### Saint-Gobain crystals have the best resolution & consistency





### Correlation: T @ 420 nm versus LO



### CC, *correlation coefficient*, is a measure of the correlation and defined by: $CC = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$

### Correlation observed between T @ 420 nm and LO





### **Decay Time**



#### Hexagonal samples have shorter decay time because of less bouncing





### **Correlation: Decay Time versus LO**



#### Correlation between LO and decay time because of light propagation



### 623 Plates of 14 x 14 x 1.5 mm with 5 Holes



| ID       | Dimension (mm <sup>3</sup> ) | Received date | Polished  | Amount |
|----------|------------------------------|---------------|-----------|--------|
| LYSO SIC | 14×14×1.5                    | 2/26/2014     | All faces | 623    |



## Summary of LO & Resolution



Two groups with 15% difference in LO and about 3.4% spread observed The average LO/resolution is 3,284/9.1% and 2,793 /11.6%





### **PHS & Decay Kinetics**



### Consistent resolution (10%) decay time (40 ns) observed





## Transmittance



### Good transmittance approaches the theoretical limit





## Summary of T@420 nm & EWLT



#### Most plates have consistent T@420 nm (83%) and EWLT (80%)





### Plates with low LO show poor resolution



#### No correlation between LO and transmittance because of short light path



## Conclusion



- LYSO crystals produced in industry show good transmittance exceeding 75% specification @ 420 nm and good FWHM energy resolution better than 12.5% specification @ 511 keV.
- Typical LO spread is at a level of 6%, which may be reduced to about 3% in mass production.
- Correlations are observed between LO and LT @ 420 nm as well as between LO and decay time for long LYSO crystals.
- A slight anti-correlation observed between LO and energy resolution for 14 x 14 x 15 mm LYSO plates.
- Results of these investigations indicate that the quality LYSO crystals grown in industry is adequate for future HEP calorimeters at both the energy and intensity frontiers.