

The Next Generation of Crystal Detectors

Ren-Yuan Zhu

California Institute of Technology

April 10, 2014

Talk given at Calor 2114, O4-10, at Giessen, Germany

Why Crystal Calorimeter in HEP?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of homogeneous crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Challenges at future HEP Experiments:
 - Radiation damage at the energy frontier (HL-LHC);
 - Ultra-fast rate at the intensity frontier;
 - Good jet mass resolution at the energy frontier (ILC/CLIC).

Existing Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(Tl)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(Tl)	CsI(TI)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X_0)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	10 ⁴	104	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: LSO/LYSO for HERD, (Mu2e, Super B) and HL-LHC (Sampling) BaF₂ for fast calorimeter for Mu2e and project X PbF₂, PbFCl, BSO for Homogeneous HCAL

relative response

CMS PWO Monitoring Response

L (10³³ cm⁻² s⁻¹)

Talk Presented at Calor 2014, O4-10, by Ren-Yuan Zhu, Caltech

Dose Rate Dependent Damage in LO

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

The LO reached equilibrium during irradiations under a defined dose rate, showing dose rate dependent radiation damage

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \left\{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \right\}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- *R*: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

Oxygen Vacancies Identified by TEM/EDS

TOPCON-002B scope, 200 kV, 10 uA, 5 to10 nm black spots identified JEOL JEM-2010 scope and Link ISIS EDS localized Stoichiometry Analysis

NIM A413 (1998) 297

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	$Point_1$	$Point_2$	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

Prediction of PWO Radiation Damage

Predicted EM dose induced damage agrees well with the LHC data In addition, there is cumulative hadron induced damage in PWO

April 10, 2014

Proton Induced Damage

The proton induced absorption in LYSO is 1/5 of PWO Net effect of damage is smaller for **short light path**

Bright, Fast Scintillator: LSO/LYSO

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	26	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	3.7	36 4.1	21	85	0.3 0.1	?
d(LY)/dT ^ь (%/ ⁰C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(GEM) TAPS Mu2e	L3 BELLE	(Mu2e) (SuperB) HL-LHC	CMS ALICE PANDA	HHCAL?
a. at peak of emiss	ion; b. up/	low row: slo	ow/fast con	nponent; o	c. QE of rea	adout device ta	aken out.	

Bright, Fast & Rad Hard LSO/LYSO

LSO/LYSO is a bright (200 times of PWO), fast (40 ns) and radiation hard crystal scintillator. The longitudinal non-uniformity issue caused by tapered crystal geometry, self-absorption and cerium segregation can be addressed by roughening one side surface. The material is widely used in the medical industry. Existing mass production capability would help in crystal cost control.

Excellent Radiation Hardness in LT

Consistent & Small Damage in LT

Larger variation @ shorter λ

Excellent Radiation Hardness in LO

Normalized Light Output

0.8

0.8

0.8

0.8

Normalized Light Output

0.8

0.8

April 10, 2014

 $\delta = (-1.2 \pm 1.0)\%$

Average L.O. = 972 p.e./MeV (300 ns)

Average L.O. = 872 p.e./MeV (300 ns)

Distance from the end coupled to PMT (mm)

10⁶ rad

175

can be corrected by light monitoring.

125

Average I

Average L.O. = 1050 p.e./MeV (300 ns)

= 970 p.e./MeV (300 ns)

175

200

150

 $\delta = (-3.3 \pm 1.0)\%$

(-4.1±1.0)%

0.8

200 0.8

n) _____ Distance from the end coupled to PMT (mm) Talk Presented at Calor 2014, 04-10, by Ren-Yuan Zhu, Caltech

SIPAT-LYSO-L7: 2.5 x 2.5 x 28 cm, Nov, 2009

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Damage in 2 x 2 x 0.5 cm Plates

5 mm thick LYSO plates show degradation of a few percepts up to 10 Mrad

Samples EWL	EWLT	L.O.	E	WLT loss (%)	L.O. loss (%)		
	(%)	(%) (p.e./MeV)	10 ⁵ rad	10 ⁶ rad	10 ⁷ rad	10 ⁵ rad	10 ⁶ rad	10 ⁷ rad
SIC-A1105-1	76.3	3657.9	0.9	1.4	1.8	1.3	2.5	3.4

LYSO Light Response Uniformization

Talk Presented at Calor 2014, O4-10, by Ren-Yuan Zhu, Caltech

Distance from the end coupled to APD (mm)

150

175

200

Light Response Uniformity(%)

SuperB LYSO Test Beam Result

Option for CMS FCAL Upgrade

Two Measurement Setups

2) LYSO plates with Tyvek wrapping are readout with CAMAC Crate four Y11 WLS fibers of 40 qvt MCA cm long and a R2059 PMT Cs¹³⁷ LeCroy 3001 PC using a Na-22 γ-ray source Gate generator and coincidence. LeCroy 2323A Discriminator 25 x 25 x 5 mm³ YSO plate wrapped with Tyvek Na²² BaF₂ PMT H.V. Supply AT (R2059) Al mirror WLS fiber H.V. 1) LYSO plates with Tyvek wrapping are PMT (R205(Disc. (LeCroy 821) H.V. readout directly by a Gate (LeCroy 222) R1306 PMT using a MCA (LeCroy 3001) Cs-137 y-ray source. CAMAC Crate

PHS of 3 mm LYSO Plate

Shashlik Tower Assembly

CMS Specification for Uniformity

D. Graham & C. Seez, CMS Note 1996-002

LYSO/W Shashlik Uniformity

Front: 0.2%/X₀, Back: 8% rise

Alternative Fast Crystals

Talk in CMS Forward Calorimetry Task Force Meeting, CERN, June 27, 2012

	LSO/LYSO	GSO	YSO ^①	Csl	BaF ₂	CeF ₃	CeBr ₃ 2	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) [©]
Density (g/cm ³)	7.40	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.70	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.10	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54.0	51.6	50.8	45.6	47.3	45.6	-
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.90	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.80	1.95	1.50	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	141	15 49	153	35
Decay Time ^a (ns)	40	73	60	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.3	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a.

- At the wavelength of the emission maximum. b.
- Top line: slow component, bottom line: fast component.¹. N. Tsuchida et al Nucl. Instrum. Methods Phys. Res. A, 385 (1997) 290-298 http://www.hitachi-chem.co.jp/english/products/cc/017.html

2. W. Drozdowski et al. IEEE TRANS. NUCL. SCI, VOL.55, NO.3 (2008) 1391-1396 Chenliang Li et al, Solid State Commun, Volume 144, Issues 5-6 (2007),220-224 http://scintillator.lbl.gov/

- 3. http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML PAGES/216.html
- Relative light yield normalized to the light yield of LSO c.
- d. At room temperature (20°C)
- Softening point

Damage in Long BaF₂ Crystals

Radiation damage in BaF2 crystals saturates at a few tens of krad SIC2012 is more radiation hard than other samples Slow component is more radiation hard than the fast component

Damage in Long Pure Csl Crystals

Consistent damage between 30/20 cm long pure CsI from SIC/Kharkov

Data of Kharkov crystals: Nucl. Ins. Meth. A 326 (1993) 508-512

Comparison of Radiation Hardness

LYSO is the best in radiation hardness. BaF_2/CsI is good at high/low dose

Rising Time for 1.5 X₀ Samples

Talk in the time resolution workshop at U. Chicago, 4/28/2011: Agilent MSO9254A (2.5 GHz) DSO with 0.14 ns rise time Hamamatsu R2059 PMT (2500 V) with rise time 1.3 ns

Figure of Merit for Timing

FoM is calculated as the LY in 1^{st} ns obtained by using light output and decay time data measured for 1.5 X₀ crystal samples.

Crystal Scintillators	Relative LY (%)	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	Total LO (p.e./MeV, XP2254B)	LO in 1ns (p.e./MeV, XP2254B)	LO in 0.1ns (p.e./MeV, XP2254B)	LY in 0.1ns (photons/MeV)
BaF ₂	40.1	91	650	9	0.9	1149	71.0	11.0	136.6
LSO:Ca,Ce	94	100	30			2400	78.7	8.0	110.9
LSO/LYSO:Ce	85	100	40			2180	53.8	5.4	75.3
CeF ₃	7.3	100	30			208	6.8	0.7	8.6
BGO	21	100	300			350	1.2	0.1	2.5
PWO	0.377	80	30	20	10	9.2	0.42	0.04	0.4
LaBr ₃ :Ce	130	100	20			3810	185.8	19.0	229.9
LaCl ₃ :Ce	55	24	570	<mark>76</mark>	24	1570	49.36	5.03	62.5
Nal:Tl	100	100	245			2604	10.6	1.1	14.5
Csl	4.7	77	30	23	6	131	7.9	0.8	10.6
CsI:TI	165	100	1220			2093	1.7	0.2	4.8
Csl:Na	88	100	690			2274	3.3	0.3	4.5

The best crystal scintillator for ultra-fast timing is BaF_2 and LSO(Ce/Ca) and LYSO(Ce). LaBr₃ is a material with high potential.

Mu2e BaF₂ Calorimeter

Talk Presented at Calor 2014, O4-10, by Ren-Yuan Zhu, Caltech

BaF₂ for Very Fast Calorimeter

The fast component of BaF₂ crystals at 220 nm has a similar light output as pure CsI and sub-ns decay time.

Spectroscopic selection of fast component may be achieved with solar blind photocathode or short pass filter.

R. Novotny, private communication

Delta-doping for CCD detectors

D. Hitlin, Talk in NSTR2014, February 28, 2014, with JPL

Candidate Crystals for HHCAL

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	PbWO ₄ (PWO)	PbF ₂	PbClF	Bi ₄ Si ₃ O ₁₂ (BSO)
ρ (g/cm³)	7.13	8.29	7.77	7.11	6.8
λ _ι (cm)	22.8	20.7	21.0	24.3	23.1
n @ λ _{max}	2.15	2.20	1.82	2.15	2.06
τ _{decay} (ns)	300	30/10	?	30	100
λ _{max} (nm)	480	425/420	?	420	470
Cut-off λ (nm)	310	350	250	280	300
Light Output (%)	100	1.4/0.37	?	17	20
Melting point (°C)	1050	1123	842	608	1030
Raw Material Cost (%)	100	49	29	29	47

Search for Scintillation in Doped PbF₂

Will look performance at low temperature with the FLS920 fluorescence lifetime spectrometer

Large Size BSO Sample

Summary

- Bright, fast and radiation hard LSO/LYSO crystals may be used for a total absorption ECAL. LYSO/W Shashlik calorimeter is one of two options for CMS FCAL upgrade technical report for HL-LHC.
- Crystal calorimeters with more than ten times faster rate/timing capability require using very fast crystals, e.g. sub-ns decay time of the BaF₂ fast scintillation component.
- Crystals (PbF₂, PbFCl & BSO) may provide a foundation for a homogeneous hadron calorimeter with dual readout for both Cherenkov and scintillation light to achieve good jet mass resolution for ILC/CLIC.
- Novel materials, such as crystals, ceramics and glasses, may play important role in future HEP experiments.