

Report on Radiation Damage in BaF₂, Pure CsI and LSO/LYSO

Ren-Yuan Zhu

California Institute of Technology

March 13, 2014

Mu2e Calorimeter Workshop

Three Candidate Crystals for Mu2e

	LSO:Ce/LYSO:Ce	BaF ₂	Csl
Density (g/cm ³)	7.40	4.89	4.51
Melting point (°C)	2050	1280	621
Radiation Length (cm)	1.14	2.03	1.86
Molière Radius (cm)	2.07	3.10	3.57
Interaction Length (cm)	20.9	30.7	39.3
Z _{eff}	64.8	51.6	54.0
dE/dX (MeV/cm)	9.55	6.52	5.56
Emission Peak ^a (nm)	420	300 220	310
Refractive Index ^b	1.82	1.50	1.95
Relative Light Yield ^a	100	42 4.8	4.2
LY in 1 st ns (photons)	740	960	100
Decay Time ^a (ns)	40	650 0.9	26
d(LY)/dT ° (%/ºC)	-0.2	-1.9 0.1	-1.4

- a. Top line: slow component, bottom line: fast component.
- b. At the wavelength of the emission maximum.
- c. At room temperature (20°C)

Radiation Damage in Three Long BaF₂ Crystals

Experiments

- Three 25 cm long BaF₂ samples were investigated
- BaF₂-S302 was annealed at 500°C for 180 minutes in N₂ flow
- All samples went through irradiations by Co-60 @ 30 rad/h and Cs-137 @ 7,062 rad/h to reach 100, 1k,10k,100k and 1M rad
- Properties measured at RT before, during and after irradiations: LT, EWLT for fast/slow components, LO & Decay Time

Initial EWLT, LO and Decay Time

All crystals have good transmittance approaching theoretical limit A strong absorption band peaked at 290 nm observed in BGRI2012

March 13, 2014

No Recovery & Dose Rate Dependence

Damage in BaF2 does not recover at RT, so is not dose rate dependent

March 13, 2014

S302: EWLT, LO and Decay Time

Damage in both LT and LO saturated after a few tens of krad

March 13, 2014

BGRI-2012: EWLT, LO and Decay Time

Damage in both LT and LO saturated after a few tens of krad

March 13, 2014

SIC-2012: EWLT, LO and Decay Time

Damage in both LT and LO saturated after a few tens of krad

March 13, 2014

Talk given in Mu2e Calorimeter Workshop by Ren-Yuan Zhu, Caltech

Summary: Loss of EWLT/LO and RIAC

Radiation damage in BaF2 crystals saturates at a few tens of krad SIC2012 is more radiation hard than other samples Slow component is more radiation hard than the fast component

March 13, 2014

Radiation Damage in Pure Csl Crystals

CsI SIC1	3		SIC2011
Sample ID	Received Date	Dimension (mm ³)	Polish
Csl SIC13	2/28/2013	$50\times50\times300$	Six faces
SIC2011	8/20/2011	Ф40×50	Two face (Ф40 faces)

Experiments

- Two CsI sample samples were investigated
- All samples went through irradiations by Co-60 @ 30 rad/h and Cs-137 @ 7,062 rad/h to reach 100, 1k,10k,100k and 1M rad
- Properties measured at RT before, during and after irradiations: LT, EWLT, LO, Decay Time & LRU

Emission, LT and EWLT

Poor surface condition makes LT much lower than theoretical limit

SIC-13: LO, Decay Time and LRU

82 p.e./MeV and 26 ns decay time observed

Variation of LRU for two end couplings indicates variation of LY along the crystal

March 13, 2014

No Recovery of Radiation Damage

Damage does not recover under room temperature: no dose rate dependence

March 13, 2014

Damage on LT and EWLT

No saturation observed up to 1 Mrad, indicating high density of defects

Light Output Damage

No saturation observed up to 1 Mrad, indicating high density of defects

Consistent decay time indicates no damage in scintillation mechanism

March 13, 2014

Damage on LO and LRU

No saturation observed up to 1 Mrad, indicating high density of defects

Comparison of Csl from SIC & Kharkov

Consistent damage between 30/20 cm long pure CsI from SIC/Kharkov

Data of Kharkov crystals: Nucl. Ins. Meth. A 326 (1993) 508-512

March 13, 2014

Radiation Damage in Long LSO/LYSO

CPI-LYSO-L	Sample ID	Dimension (mm ³)	Polish
CTI-LSO-L	CPI-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SG-LYSO-L	CTI-LSO-L	$25 \times 25 \times 200$	Six faces polished
	SG-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SIC-LYSO-L	SIC-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SIPAT-LYSO-L	SIPAT-LYSO-L	$25 \times 25 \times 200$	Six faces polished

Experiments

- Properties measured at room temperature before after irradiation: longitudinal transmittance (LT) & light output (LO).
- Step by step irradiations by γ-rays: 100, 1K, 10K, 100K and 1M rad.

Excellent Radiation Hardness in LT

Consistent & Small Damage in LT

Larger variation @ shorter λ

March 13, 2014

Talk given in Mu2e Calorimeter Workshop by Ren-Yuan Zhu, Caltech

Excellent Radiation Hardness in LO

Comparison of Three Crystals

LYSO is the best in radiation hardness. BaF₂/CsI is good at high/low dose

March 13, 2014

Summary

Damage in all three crystals does not recover at room temperature, so has no dose rate dependence. LSO/LYSO crystals are the best in both brightness and radiation hardness.

Both BaF₂ and pure CsI have compatible fast light and low cost. They are, however, significantly radiation softer than LSO/LYSO.

Because of low defect density radiation damage in BaF_2 is saturated beyond 10 krad, promising a stable detector at high integrated dose.

Radiation damage in pure CsI is small at low dose, but shows no saturation at high dose.

One additional advantage of BaF_2 is that it is possible to cure radiation damage in BaF_2 through thermal annealing or optical bleaching. This feature reduces the cost for damage study and provides an additional flexibility, e.g. optical bleaching *in situ*.