

Fast Neutron Induced Radiation Damage in Crystals

Ren-Yuan Zhu

California Institute of Technology

October 15, 2013

Mu2e Calorimeter Group Meeting

Crystal Samples Tested

SIC CeF ₃		
SIC BGO	ID	Dimension (mm)
SG-L2 LYSO	SIC-BGO	25x25x200
SIPAT-L2 LYSO	SIC-CeF ₃	30x30x140
	SG-LYSO-L2	25x25x200
SIPAT-L/LYSO	SIPAT-LYSO-L2	25x25x200
SIC-2781 PWO	SIPAT-LYSO-L7	25x25x280
	SIC-PWO-2781	28.5 ² x220x30 ²
BTCP-2376 PWO	BTCP-PWO-2376	28.5 ² x220x30 ²

An Am²⁴¹-Be Neutron Source

Samples were laced at 14 cm from the source. Neutron flux at crystal surface was about 10³ n s⁻¹ cm⁻².

Two ²⁵²Cf Neutron Sources

Samples were placed at 8 cm from two sources. Neutron flux at crystal surface was about 1.4×10^4 (10/09) & 1.0×10^4 n s⁻¹ cm⁻² (9/10)

October 15, 2013

Neutrons from the ²⁴¹Am-Be source have a broad distribution from 1 to 10 MeV with an average of 4.5 MeV, and are peaked at 2.2 MeV with a range of 1-10 MeV from the ²⁵²Cf sources.

October 15, 2013

Integrated Neutron Fluence

Radiation effects on LT, LO and readout noise measured

- 6x10⁸ n/cm (²⁴¹Am-Be) for all but SIPAT-LYSO-L7: No obvious change was observed. Effect of neutron induced phosphorescence to readout noise was determined.
- 1x10¹⁰ n/cm (²⁵²Cf) for all but SIPAT-LYSO-L7: Damage observed in transmittance at a few percent and light output at several percent.
- 6x10¹⁰ n/cm (²⁵²Cf) for SIPAT-LYSO-L7: Damage in transmittance and light output were observed.

6×10⁸ n/cm²: SIC-BGO

No change was observed

6×10⁸ n/cm²: SIC-CeF₃

No change was observed

6×10⁸ n/cm²: SG-LYSO-L2

No change was observed

October 15, 2013

6×10⁸ n/cm²: SIPAT-LYSO-L2

No change was observed

6×10⁸ n/cm²: SIC-PWO-2781

No change was observed

October 15, 2013

Presented at Mu2e Calorimeter Meeting by Ren-Yuan Zhu, Caltech

11

6×10⁸ n/cm²: BTCP-PWO-2376

No change was observed

10¹⁰ n/cm²: SIC-BGO

Damage: EWLT 1%, LO 5%

October 15, 2013

10¹⁰ n/cm²: SIC-CeF₃

Damage: EWLT 3%, LO 2%

October 15, 2013

Presented at Mu2e Calorimeter Meeting by Ren-Yuan Zhu, Caltech

14

10¹⁰ n/cm²: SG-LYSO-L2

Damage: EWLT 1%, LO 2%

10¹⁰ n/cm²: SIPAT-LYSO-L2

Damage: EWLT 1%, LO 3%

10¹⁰ n/cm²: SIC-PWO-2781

Damage: EWLT 1%, LO 4%

10¹⁰ n/cm²: BTCP-PWO-L2

Damage: EWLT 1%, LO 9%

October 15, 2013

6 x 10¹⁰ n/cm²: SIPAT-LYSO-L7

Damage: EWLT 1%, LO 3%

October 15, 2013

LT & LO Damage Summary

ID	Radiation Damage Effect							
Fluence (n/cm ²)	EWLT (%)			LO (p.e./MeV)				
	0	6 ×10 ⁸	1 x 10 ¹⁰	6 x 10 ¹⁰	0	6 × 10 ⁸	1 x 10 ¹⁰	6 x 10 ¹⁰
SIC BGO	74.5±0.2	74.7±0.2	73.8±0.2		210±2	210±2	200±2	
SIC CeF ₃	18.7±0.1	18.7±0.1	18.2±0.1		60.4±0.6	59.9±0.6	59.2±0.6	
SG LYSO L2	61.7±0.2	61.3±0.2	61.0±0.2		1290±13	1300±13	1270±13	
SIPAT LYSO L2	57.7±0.2	57.5±0.2	57.3±0.2		1020±10	1010±10	990±10	
SIPAT LYSO L7	48.8±0.2			48.3±0.2	700±7			680±7
SIC PWO	74.2±0.2	74.3±0.2	73.7±0.2		14.2±0.1	14.2±0.1	13.7±0.1	
BTCO PWO	75.5±0.2	75.7±0.2	74.8±0.2		7.5±0.1	7.4±0.1	6.8±0.1	

October 15, 2013

Neutron Induced Phosphorescence

Phosphorescence decay time is about 2 hrs for BGO

Neutron Induced Phosphorescence

Phosphorescence decay time is about 10 hrs for LYSO

October 15, 2013

Neutron Induced Phosphorescence

Phosphorescence decay time is about 30 to 40 hrs for PWO

Photoelectron Current Coefficient

F is defined as the neutron induced photoelectron number under unit neutron flux, which can be determined by using the measured anode current:

$$F = \frac{Photocurrent}{Charge_{electron} \times Gain_{PMT}}{Flux_{crystal}} \qquad (p.e. n^{-1} cm^{2})$$

Because of the difficulty to properly subtract the contribution of the gamma components of the neutron sources all numerical values, including F, are considered as a upper limit.

Neutron Induced Readout Noise

Cumulated neutron fluence at the LHC are estimated to be up to 5.3×10^{13} n/cm² and 1.7×10^{15} n/cm² for CMS ECAL barrel and endcap respectively (CMS NOTE, 2008/000). Ten times higher neutron fluence are expected at the HL-LHC.

The photoelectron number in the readout gate can be extrapolated as following:

$$Q = \frac{10 \times Fluence_{10yr} \times Gate_{readout} \times F}{5.0 \times 10^7 (s)}$$
 (p.e.)

and the energy equivalent noise is derived as the standard deviation of photoelectron number :

$$\sigma = \frac{\sqrt{Q}}{LO} \quad \text{(MeV)}$$

October 15, 2013 Presented at Mu2e Calorimeter Meeting by Ren-Yuan Zhu, Caltech

Readout Noise Summary

Gates of 100 ns, 200 ns and 1µs are used for PWO, LYSO and CeF, and BGO respectively. LYSO shows the smallest neutron induced readout noise.

Sample	Dimension cm ³	L.Y. p.e./MeV	F p.e.n ⁻¹ cm ²	F p.e.n ⁻¹ cm ²	σ _{bar} MeV	σ _{bar} MeV	σ _{end} MeV	$\stackrel{\sigma_{end}}{MeV}$
SIC-2781 PWO	2.8×22×3.0	14.2	1.7×10^{3}	1.6×10 ³	2.5	2.4	26.3	25.5
BTCP-2376 PWO	2.8×22×3.0	7.5	1.0×10 ³	1.2×10 ³	4.1	4.5	37.0	40.5
SIPAT-L2 LYSO	2.5×20×2.5	1940	2.6×10^5	2.3×10 ⁵	0.3	0.3	3.4	3.2
SG-L2 LYSO	2.5×20×2.5	2480	3.4×10^{5}	3.2×10 ⁵	0.3	0.3	2.9	2.8
SIC BGO	2.5×20×2.5	340	2.0×10^4	4.1×10 ⁴	1.4	1.9	11.7	16.3
SIC-CeF ₃	3.0×14×3.0	60	2.6×10 ³	3.0×10 ³	0.4	0.4	2.2	2.4
	•		Am ²⁴¹ -Be	Cf ²⁵²				

Summary

No damage was observed in optical and scintillation properties in large size BGO, CeF_{3} , LYSO and PWO crystals with cumulated fast fluence of 6×10^8 n cm⁻².

Damage in LT at a few percent and LO at several percent was observed with cumulated fluence of 1×10^{10} n cm⁻².

The neutron induced photocurrent during irradiation was measured and was used to estimate the readout noise. The results show that LYSO has the smallest neutron induced readout noise because of its high LO.

Further studies are needed to go through higher neutron influence and to clear up γ -ray effects.