

Fast Crystal Scintillators for Future HEP Experiments

Ren-Yuan Zhu

California Institute of Technology

October 3, 2013

Physics/Theory Colloquium at Los Alamos Laboratory

Why Crystal Calorimeter in HEP?

- Precision e/γ measurements enhance physics discovery potential.
- Performance of homogeneous crystal calorimeter for e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Challenges at future HEP Experiments:
 - Radiation hard calorimeter for HL-LHC;
 - Good jet mass resolution for ILC/CLIC;
 - Ultra-fast rate and γ -pointing at the intensity frontier.

L3 BGO Resolution

Physics with Crystal Calorimeters (I)

Physics with Crystal Calorimeters (II)

Charmonium system observed by CB through Inclusive photons

CB Nal(Tl)

Higgs -> $\gamma\gamma$ by CMS through reconstructing photon pairs

2013 Nobel Price for Physics?

October 3, 2013

$H \rightarrow \gamma \gamma$ Search Needs Precision ECAL

Existing Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(Tl)	CsI(TI)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X_0)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	10 ⁴	104	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: LSO/LYSO for Mu2e, (Super B), and HL-LHC (Sampling) PbF₂, PbFCl, BSO for Homogeneous HCAL BaF₂ for fast calorimeters at the intensity frontier

History of Scintillating Crystals

M.J. Weber, J. Lumin. 100 (2002) 35

October 3, 2013

Crystals for HEP Calorimeters

	Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
	Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
	Melting Point (ºC)	651	621	621	1280	1050	2050	1123	824
	Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
	Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
	Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
	Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
	Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
	Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?
	Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?
	Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?
	d(LY)/dT ^ь (%/ ⁰C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
	Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	Mu2e (SuperB) HL-LHC?	CMS ALICE PANDA	HHCAL?
	a. at peak of emis	sion; b. up,	low row: sl	ow/fast con	nponent; d	c. QE of rea	idout device ta	iken out.	
Octo	ber 3, 2013 Physics/	Theory colloo	quium Presen [.]	ted at Los Ala	mos Nationa	al Laboratory	y by Ren-Yuan Zhu	u, Caltech	1

11

Crystals for Homeland Security

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	LaCl ₃ (Ce)	Srl ₂ (Eu)	LaBr ₃ (Ce)
Density (g/cm ³)	3.67	4.51	4.51	3.86	4.59	5.29
Melting Point (°C)	651	621	621	859	538	788
Radiation Length (cm)	2.59	1.86	1.86	2.81	1.95	1.88
Molière Radius (cm)	4.13	3.57	3.57	3.71	3.40	2.85
Interaction Length (cm)	42.9	39.3	39.3	37.6	37.0	30.4
Refractive Index ^a	1.85	1.79	1.95	1.9	?	1.9
Hygroscopicity	Yes	Slight	Slight	Yes	Yes	Yes
Luminescence ^b (nm) (at peak)	410	550	420	335	435	356
Decay Time ^b (ns)	245	1220	690	570 24	1100	20
Light Yield ^{b,c} (%)	100	165	88	13 42	221	130
d(LY)/dT ^b (%/ ºC)	-0.2	0.4	0.4	0.1	?	0.2

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.

October 3, 2013

TISTITUTE OF

(ICHNOI

Crystal Density: Radiation Length

October 3, 2013

Excitation, Emission, Transmission

 $T_s = (1-R)^2 + R^2(1-R)^2 + \dots = (1-R)/(1+R)$, with

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

No Self-absorption: BGO, PWO, BaF₂, NaI(TI) and CsI(TI)

October 3, 2013

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Emission Weighted QE

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

L.O. Temperature Coefficient

Temperature Range: 15 - 25°C

Large coefficient: Csl, BGO, slow component of BaF₂ and PWO

¹³⁷Cs FWHM Energy Resolution

3% to 80% measured with Hamamatsu R1306 PMT with bi-alkali cathode

2% resolution and proportionality are important for γ -ray spectroscopy between 10 keV to 2 MeV

October 3, 2013

Low Energy Non Proportionality

D: deviation from linearity: 60 keV to 1.3 MeV Good Crystals: LaBr₃, BaF₂, CsI(Na) and BGO

Statistical & Intrinsic Resolutions

20

CMS PWO Monitoring Response

The observed degradation is well understood

October 3, 2013

Dose Rate Dependent EM Damage

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

The LO reached equilibrium during irradiations under a defined dose rate, showing dose rate dependent radiation damage

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \left\{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \right\}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

October 3, 2013

Oxygen Vacancies Identified by TEM/EDS

TOPCON-002B scope, 200 kV, 10 uA, 5 to10 nm black spots identified JEOL JEM-2010 scope and Link ISIS EDS localized Stoichiometry Analysis

NIM A413 (1998) 297

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	$Point_1$	$Point_2$	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

October 3, 2013

Prediction of PWO Radiation Damage

October 3, 2013

Proton Induced Damage

The proton induced absorption in LYSO is 1/5 of PWO Damage may also be reduced by short light path

October 3, 2013

Bright, Fast & Rad Hard LSO/LYSO

LSO/LYSO is a bright (200 times of PWO), fast (40 ns) and radiation hard crystal scintillator. The longitudinal non-uniformity issue caused by tapered crystal geometry, self-absorption and cerium segregation can be addressed by roughening one side surface. The material is widely used in the medical industry. Existing mass production capability would help in crystal cost control.

October 3, 2013

Excellent Radiation Hardness in LT

Consistent & Small Damage in LT

Larger variation @ shorter λ

October 3, 2013

Excellent Radiation Hardness in LO

0.8

0.8

 $\delta = (-1.8 \pm 1.0)\%$

Normalized Light Output

Average L.O. = 1050 p.e./MeV (300 ns)

125

..O. = 970 p.e./MeV (300 ns)

150

175

200

monitoring.

Average I

75

 $\delta = (-3.3 \pm 1.0)\%$

0.8

0.8

200

10⁶ rad

175

= 872 p.e./MeV (300 ns)

Distance from the end coupled to PMT (mm) Physics/Theory colloquium Presented at Los Alamos National Laboratory by Ren-Yuan Zhu, Caltech October 3, 2013

October 3, 2013

Damage in 25x25x5 mm LYSO Plates

Two 5 mm thick LYSO plates went through γ-ray irradiation to 10 Mrad with degradation in both EWLT and LO less than 10%.

	EWLT	L.O.	E	WLT loss (%)	L.O. loss (%)			
Samples	(%)	(p.e./MeV)	10 ⁵ rad	10 ⁶ rad	10 ⁷ rad	10 ⁵ rad	10 ⁶ rad	10 ⁷ rad	
SIC-A1105-1	76.3	3657.9	0.9	1.4	1.8	1.3	2.5	3.4	
SIC-A1105-2	77.2	3846.1	2.3	2.5	2.6	4.4	7.7	9.1	

October 3, 2013

Mu2e Experiment at Fermilab

Production Solenoid

• Production target

Transport Solenoid

• Graded field

- Delivers ~ 0.0015 stopped
- μ^- per incident proton
- 5 × 10¹⁰ Hz of stopped muons

Detector Solenoid

- Muon stopping target
- Tracker
- Calorimeter
- Warm bore evacuated to 10⁻⁴ Torr
- Collimation system selects muon charge and momentum range
- Pbar window in middle of central collimator

Mu2e LYSO Calorimeter

LYSO Light Response Uniformization

October 3, 2013

LYSO Test Beam Result

http://iopscience.iop.org/1742-6596/404/1/012065/pdf/1742-6596_404_1_012065.pdf

October 3, 2013

CMS Forward Calorimeter Upgrade

October 3, 2013

LYSO Based Shashlik Cell Design

		LHCb	Plan-1	Plan-2
		Lead (Pb)	Lead (Pb)	Tungsten (W)
	Density (g/cm3)	11.4	11.4	19.3
	Radiation Length (cm)	0.56	0.56	0.35
Absorber	Moliere Radius (cm)	1.60	1.60	0.93
	dE/dX (MeV/cm)	12.74	12.74	22.1
	Thickness (mm)	2	4	2.5
	Plates number	66	28	28
		BASF-165 Polystyrene (Sc)	LYSO	LYSO
	Density (g/cm3)	1.06	7.4	7.4
	Light Yield (photons/MeV)	5200	30000	30000
Cointillator	Radiation length (cm)	41.31	1.14	1.14
Scintillator	Moliere Radius (cm)	9.59	2.07	2.07
	dE/dX (MeV/cm)	2.05	9.55	9.55
	Plate Thickness(mm)	4	2	2
	Plates number	67	29	29
		Kurarray Y-11(250)	Kurarray Y-11(250)	Kurarray Y-11(250)
WLS Fiber	Diameter (mm)	1.2	1.2	1.2
	Number /Cell	16	4	4
	Total Depth (X0)	24.22	25.09	25.09
	Sampling Fraction (MIPs)	0.25	0.28	0.26
	Total Physical Length (cm)	40	17	12.8
	Total Sc Length (cm)	26.8	5.8	5.8
	Absorber Weight Ratio	0.84	0.75	0.76
Cell Properties	Scintillator Weight Ratio	0.16	0.25	0.24
centroperties	Average Density (g/cm3)	4.47	10.04	13.91
	Average Radiation Length (cm)	1.65	0.68	0.51
	Average Moliere Radius (cm)	3.6	1.7	1.2
Absorber Image: Construction of the sector of the sect	Transverse Dimension (cm)	4.1	1.9	1.4
	Sc-depth/Total-depth in X0	0.0268	0.2028	0.2028
	WLS Fiber Density (N/cm2)	0.97	1.06	2.07
MIPs Energy Deposition	Sc plates (MeV)	54.94	55.39	55.39
Light Yield using MIPs	Photon Electrons/GeV	3077	17897	17897
Signal of MIPs	Photon Electrons / MIP	169	991	991
Module Properties	Energy Resolution (a, %)	8.2	9.0*	9.0*

* Based on the simulation of Zhigang Wang, IHEP, Beijing.

October 3, 2013

Three LYSO Plates with Holes

$25 \times 25 \times 5$, 3 and 1.5 mm³

Two Measurement Setups

2) LYSO plates with Tyvek wrapping are readout with CAMAC Crate four Y11 WLS fibers of 40 qvt MCA cm long and a R2059 PMT Cs¹³⁷ LeCroy 3001 PC using a Na-22 γ-ray source Gate generator and coincidence. LeCroy 2323A Discriminator 25 x 25 x 5 mm³ YSO plate wrapped with Tyvek Na²² BaF₂ PMT H.V. Supply IT (R2059) Al mirror WLS fiber H.V. 1) LYSO plates with Tyvek wrapping are PMT (R205(Disc. (LeCroy 821) H.V. readout directly by a Gate (LeCroy 222) R1306 PMT using a Cs-137 y-ray source. MCA (LeCroy 3001) CAMAC Crate

PHS of 3 mm LYSO Plate

γ-ray peaks are clearly visible

October 3, 2013

PMT Quantum Efficiency

Light Output (LO) measured in p.e./MeV are converted to Light Yield (LY) in photons/MeV by taking out the QE of the PMT

LY = LO / QE

Light Collection Efficiencies

Samples	5 mm LYSO	3 mm LYSO	1.5 mm LYSO	LHCb cell*
LO1(p.e. /MeV)	3760	3970	4370	
LY ₁ (Photons /MeV)	29,150	30,780	33,880	5,200
LO ₂ (p.e./MeV)	20.7	24.3	17.9	3.1
LY ₂ (Photons /MeV)	479	563	414	
MIP (p.e./55 MeV)	1,140	1,340	990	169
LO ₂ /LO ₁ (%)	0.55	0.61	0.41	
LO ₂ /LY ₁ (%)	0.07	0.08	0.05	0.06
LY ₂ /LY ₁ (%)	1.64	1.83	1.22	

* 2009 J. Phys.: Conf. Ser. 160 012047.

Measured light collection efficiencies consist with the LHCb data

October 3, 2013

The HHCAL Detector Concept

October 3, 2013

Candidate Crystals for HHCAL

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	PbWO ₄ (PWO)	PbF ₂	PbClF	Bi ₄ Si ₃ O ₁₂ (BSO)
ρ (g/cm³)	7.13	8.29	7.77	7.11	6.8
λ _ι (cm)	22.8	20.7	21.0	24.3	23.1
n @ λ _{max}	2.15	2.20	1.82	2.15	2.06
τ _{decay} (ns)	300	30/10	?	3	100
λ _{max} (nm)	480	425/420	?	400	470
Cut-off λ (nm)	310	350	250	280	300
Light Output (%)	100	1.4/0.37	?	2	20
Melting point (°C)	1050	1123	842	608	1030
Raw Material Cost (%)	100	49	29	29	47

October 3, 2013

Search for Scintillation in Doped PbF₂

Will look performance at low temperature with the FLS920 fluorescence lifetime spectrometer

Future Calorimeter at the IF

Excellent energy resolution: a total absorption crystal calorimeter.

Good photon pointing for π^0 reconstruction: a longitudinally segmented crystal calorimeter.

A fast calorimeter with ten times rate capability as compared to existing calorimeters: crystals with sub nanosecond scintillation decay time. The figure of merit is the light in the 1st ns.

A Long. Segmented Crystal ECAL

With compact readout devices embedded in the detector

May provide needed resolutions for energy, position and photon angle

October 3, 2013

Fast Scintillator: BaF₂ (ZnO:Ga, PbFCl, YAP:Yb, Cul)

	LYSO:Ce	Csl	BaF ₂	CeF ₃	CeBr ₃	LaBr ₃ :Ce	ZnO:Ga 2	PbFCl	Y _{0.55} Yb _{0.45} AlO ₃	Cul 🌗
Density (g/cm ³)	7.40	4.51	4.89	6.16	5.23	5.29	5.67	7.11	6.59	5.61
Melting point (°C)	2050	621	1280	1460	722	783	1975	608	1870	602
Radiation Length (cm)	1.14	1.86	2.03	1.70	1.96	1.88	2.51	1.05	1.67	1.71
Z _{eff}	64.8	54.0	51.6	50.8	45.6	45.6	27.7	75.8	52.6	47.1
dE/dX (MeV/cm)	9.55	5.56	6.52	8.42	6.65	6.90	8.42	8.68	9.27	7.35
Emission Peak ^a (nm)	420	420 310	300 220	340 300	371	356	389	400	350	410
Refractive Index ^b	1.82	1.95	1.50	1.62	1.9	1.9	2.1	2.1	1.96	2.1
Relative Light Yield ^{a,c}	100	4.2 1.3	42 4.8	8.6	141	153	?	0.5	0.6 ? 2.2 ?	?
LY in 1 st ns (photons)	740	100	960	85	2420	2240	?	51	497 ?	?
Decay Time ^a (ns)	40	30 6	650 0.9	30	17	20	<1	3	2.2 <1	<1
d(LY)/dT ª (%/°C)	-0.2	-1.4	-1.9 0.1	~0	-0.1	0.2	?	?	?	?
40 keV Att. λ (mm)	0.185	0.097	0.106	0.428	0.277	0.131	0.407	0.122	0.245	0.108
40 keV δ 90% (mm)	0.425	0.222	0.244	0.987	0.637	0.301	0.938	0.281	0.564	0.248
40 keV δ 95% (mm)	0.553	0.289	0.317	1.284	0.829	0.392	1.220	0.365	0.734	0.323
40 keV δ 99% (mm)	0.850	0.444	0.488	1.973	1.274	0.602	1.876	0.561	1.128	0.497

a. up/low row: slow/fast component; b. at peak of emission; c. QE of readout device taken out

W. Drozdowski et al, IEEE TRANS. NUCL. SCI, VOL.55, (2008) 1391-1396; and Chenliang Li et al, Solid State Commun, Volume 144, Issues 5–6 (2007),220–224. 1)

http://scintillator.lbl.gov/; P.J. Simpson et al, NIM A505 (2003) 82-84; and E.D. Bourret-Courchesne et al, NIM A601 (2009) 358-363. 2)

M. Nikl et al, Appl. Phys. Lett. 84, 882 (2004). 3)

Zu-xu Cai et al, The fluorescence decay time and slow component suppression in Cul single crystal, Talk in SCINT2013, Shanghai. October 3. 2013

Rising Time for 1.5 X₀ Samples

Talk in the time resolution workshop at U. Chicago, 4/28/2011: Agilent MSO9254A (2.5 GHz) DSO with 0.14 ns rise time Hamamatsu R2059 PMT (2500 V) with rise time 1.3 ns

BaF₂ for Very Fast Calorimeter

The fast component of BaF₂ crystals at 220 nm has a sub-ns decay time.

The slow component at 300 nm may be reduced by selective doping, such as La.

Spectroscopic selection of fast component may be achieved with solar blind photo-detectors or filters.

PbFCl

X-ray excited luminescence 295K

PbFCI Pure

600

500

PWO ST

Na-22 Source

YAIO₃:Yb

Fast (0.87/2.2 ns) scintillation found in YAP:Yb with low light output

FIG. 1. Radioluminescence of Yb:YAP and BGO at RT. Excitation by x-ray tube, 35 kV, 15 mA. Quantitative comparison with respect to BGO is provided by the calculation of spectra integrals.

FIG. 3. Scintillation decay of Yb-0.45 at room temperature. Excitation by 511 keV photons of ²²Na radioisotope, spectrally unresolved. The two-exponential approximation is given by a solid line: convolution of the two-exponential function in the figure with the instrumental response given by a dashed line. The coefficient alpha related to the relative amplitude of the superslow components calculated according Ref. 12 is also given.

τ

2.1

Summary

- Precision ECAL with good e/γ resolution may be built for CMS forward calorimeter upgrade at the HL-LHC by using blight, fast and rad hard LYSO crystals.
- Homogeneous hadron calorimeter with good jet mass resolution may be built for future lepton colliders by reading both Cherenkov and scintillation light for PbF₂, PbFCl and BSO.
- Crystal calorimeters with more than ten times faster rate/timing capability may be built for future HEP experiments at the intensity frontier by using the subns decay time of BaF₂.
- Investigations on novel fast crystal scintillators, such as PbFCl, YAP:Yb, ZnO:Ga and Cul, may play important role for future HEP experiments.