

Crystal Calorimetry for Lepton Factories

Ren-Yuan Zhu California Institute of Technology January 10, 2013

Talk at the Joint CPAD and Instrumentation Frontier Community Meeting, ANL

Why Crystal Calorimeter in HEP?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of homogeneous crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Challenges at future lepton colliders: bright, fast crystal scintillators with better radiation hardness than CsI(Tl).
- Crystals are being considered for sampling calorimeters as well as homogeneous hadron calorimeter with dual readout for good jet mass resolution.

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	CsI	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	10 ⁴	10 ⁴	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LSO/LYSO for Mu2e, Super B and HL-LHC, also a Shashlic PbF₂, PbFCl, BSO for Homogeneous HCAL

January 10, 2013

Crystal Calorimeter Resolution

L3: 12k BGO

BaBar: 6.6k CsI(TI)

Why LSO/LYSO?

LSO/LYSO is a bright (200 times of PWO), fast (40 ns) and radiation hard crystal scintillator. The light output loss of 28 cm long crystal is at a level of 10% after 1 Mrad γ -ray irradiations, much better than all other crystal scintillators.

The longitudinal non-uniformity issue caused by tapered crystal geometry, self-absorption and cerium segregation can be addressed by roughening one side surface.

The material is widely used in the medical industry. Existing mass production capability would help in crystal cost control.

References: *IEEE Trans. Nucl. Sci.* NS-52 (2005) 3133-3140, *IEEE Trans. Nucl. Sci.* NS-54 (2007) 718-724, *IEEE Trans. Nucl. Sci.* NS-54 (2007) 1319-1326, *IEEE Trans. Nucl. Sci.* NS-55 (2008) 1759-1766, *IEEE Trans. Nucl. Sci.* NS-55 (2008) 2425-2341, *IEEE Trans. Nucl. Sci.* NS-59 (2012) 2224-2228, N32-4 & N32-5 @ NSS09, Orlando, N38-2 @ NSS10, Knoxville, N29-6 @ NSS11, Valencia.

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	Csl	BaF ₂	CeF_3	BGO	PWO(Y)	LSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.51	4.89	6.16	7.13	8.3	7.40
Melting Point (°C)	651	621	621	621	1280	1460	1050	1123	2050
Radiation Length (cm)	2.59	1.86	1.86	1.86	2.03	1.70	1.12	0.89	1.14
Molière Radius (cm)	4.13	3.57	3.57	3.57	3.10	2.41	2.23	2.00	2.07
Interaction Length (cm)	42.9	39.3	39.3	39.3	30.7	23.2	22.8	20.7	20.9
Refractive Index ^a	1.85	1.79	1.95	1.95	1.50	1.62	2.15	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420	420 310	300 220	340 300	480	425 420	402
Decay Time ^b (ns)	245	1220	690	30 6	650 0.9	30	300	30 10	40
Light Yield ^{b,c} (%)	100	165	88	3.6 1.1	36 4.1	7.3	21	0.3 0.1	85
d(LY)/dT ^ь (%/ ⁰C)	-0.2	0.4	0.4	-1.4	-1.9 0.1	0	-0.9	-2.5	-0.2
Experiment	Crystal Ball	BaBar BELLE BES III	-	KTeV	(L*) (GEM) TAPS	-	L3 BELLE	CMS ALICE PANDA	Mu2e (SuperB) CMS?
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.									

January 10, 2013

Crystal Density: Radiation Length

January 10, 2013

Excitation, Emission, Transmission

$$T_s = (1-R)^2 + R^2(1-R)^2 + \dots = (1-R)/(1+R)$$
, with

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

No Self-absorption: BGO, PWO, BaF₂, NaI(TI) and CsI(TI)

January 10, 2013

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

January 10, 2013

Long LSO & LYSO Crystal Samples

2.5 x 2.5 x 20 cm (18 X₀)

January 10, 2013

20 cm Long LSO/LYSO under γ**-Rays**

Consistent radiation hardness better than other crystals

EWLT damage: 8% @ 1 Mrad

10% - 15% loss by PMT & APD

January 10, 2013

Excellent Radiation Hardness

SIPAT-LYSO-L7: 2.5 x 2.5 x 28 cm, Nov, 2009

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2

January 10, 2013

Radiation Hardness aginst Hadrons

G. Dissertori, D. Luckey, P. Lecomte, Francesca Nessi-Tedaldi, F. Pauss, IEEE NSS09, N32-3

The induced absorption of LYSO is 1/5 of PWO.

Twenty Five SuperB Crystals

All crystals are characterized in Caltech Crystal Laboratory

Effect of Self-Absorption

Part of the emission light is absorbed in the crystal (self-absorption), leading to a strong wavelength dependent light attenuation length

January 10, 2013

Effect of Cerium Segregation

It is also known that cerium concentration along long LYSO crystals is not uniform, causing non-uniformity up to 10% at two ends, indicating up to 5% variation in δ is possible because of cerium segregation.

January 10, 2013

17

Ray-Tracing Simulation "set-up"

The simulation package was developed in early eighties, and was used for the L3 BGO and CMS PWO crystals.

SuperB LYSO crystals

Polished and Roughened Surfaces

 The optical focusing, effect dominates nonuniformity: δ is about 13% for all polished surfaces.

Roughened surface(s) can compensate the optical focusing effect.

➤ The best result is achieved by roughening only one side surface.

20

Real Exercise: Roughening SIC-LYSO-L3

The smallest side surface of SIC-LYSO-L3 was roughened to Ra = 0.3 at SIC via a two step process

Thanks to SICCAS for roughening this crystal

1st: lapped to Ra = 0.5 by using 11 μ m Al₂O₃ powder for 10 min with 2.5 kg weight 2nd: lapped to Ra = 0.3 by using 6.5 μ m SiC powder for 3 min with 1.5 kg weight

Relative Light Output & Uniformity

Ra = 0.3 uniformizes SIC-L3 to < 2% All 25 crystals are uniformized to $|\delta| < 3\%$

January 10, 2013

SuperB Test Beam at BTF, Frascati

A LYSO matrix of 25 crystals was tested in May, 2011 at the beam test facility in Frascati. Crystals were uniformized by black painting of 15 mm at the small end of the smallest side surface

January 10, 2013

Summary

- Because of its excellent resolution crystal calorimetry will play an important role in future lepton factories.
- LSO/LYSO crystals with bright, fast scintillation and excellent radiation hardness is a good candidate for crystal calorimetry in future lepton factories.
- The light response uniformity of tapered SuperB crystals is affected by (1) the crystal geometry related optical focusing, (2) the self-absorption and (3) the non-uniformity of the cerium concentration. All 25 SuperB test beam crystals are uniformized to |δ|<3% by roughening the smallest side surface.</p>
- For applications in a severe radiation environment, such as the CMS forward calorimetry at the HL-LHC, R&D works concentrate on LSO/LYSO based sampling calorimeters. See crystal calorimeter talk in Session G.