

Crystal Calorimeters for Future HEP Experiments

Ren-Yuan Zhu California Institute of Technology January 11, 2013

Talk at the Joint CPAD and Instrumentation Frontier Community Meeting, ANL

Why Crystal Calorimeter in HEP?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of homogeneous crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Challenges at future HEP Experiments:
 - Radiation damage at the energy frontier (HL-LHC);
 - Ultra-fast rate at the intensity frontier;
 - Good jet mass resolution at the energy frontier (ILC/CLIC).

January 11, 2013

Existing Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(TI)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	10 ⁴	10 ⁴	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: LSO/LYSO for Mu2e, (Super B) and HL-LHC (Sampling) BaF₂ for fast calorimeter for project X PbF₂, PbFCl, BSO for Homogeneous HCAL

January 11, 2013

CMS PWO Monitoring Response

The observed degradation is well understood

Talk Presented at the Joint CPAD and Instrumentation Frontier Community Meeting by Ren-Yuan Zhu, Caltech

Dose Rate Dependent Damage in LO

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

The LO reached equilibrium during irradiations under a defined dose rate, showing dose rate dependent radiation damage

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \left\{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \right\}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

January 11, 2013

Oxygen Vacancies Identified by TEM/EDS

TOPCON-002B scope, 200 kV, 10 uA, 5 to10 nm black spots identified JEOL JEM-2010 scope and Link ISIS EDS localized Stoichiometry Analysis

NIM A413 (1998) 297

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	Point ₁	$Point_2$	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

January 11, 2013

7

Prediction of PWO Radiation Damage

Predicted EM dose induced damage agrees well with the LHC data In addition, there is cumulative hadron induced damage in PWO

January 11, 2013

Bright, Fast Scintillator: LSO/LYSO

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?
d(LY)/dT ^ь (%/ ⁰C)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) <u>TAPS</u>	L3 BELLE	KLOE-2 (SuperB) SLHC?	CMS ALICE PANDA	HHCAL?
a. at peak of emiss	ion; b. up/	low row: slo	w/fast con	nponent; o	c. QE of rea	adout device ta	aken out.	

January 11, 2013

Bright, Fast & Rad Hard LSO/LYSO See Talk in Session B for the Details

LSO/LYSO is a bright (200 times of PWO), fast (40 ns) and radiation hard crystal scintillator. The longitudinal non-uniformity issue caused by tapered crystal geometry, self-absorption and cerium segregation can be addressed by roughening one side surface. The material is widely used in the medical industry. Existing mass production capability would help in crystal cost control.

Bright & Fast

EWLT/LO damage: 8%/10% @ 1 Mrad For 20 cm long LSO/LYSO crystals

LYSO Light Response Uniformization

January 11, 2013

THSTITUTE OF

Talk Presented at the Joint CPAD and Instrumentation Frontier Community Meeting by Ren-Yuan Zhu, Caltech

Distance from the end coupled to APD (mm)

RMS - 1.1%, R. L.O. - 74%

150

175

200

-2.5 0 2.5 5 7.5 10

δ = (-1.9±1.5)%,

11

12.5 15 17.5 20

Light Response Uniformity(%)

January 11, 2013

28 cm Long LYSO Under γ-Rays

SIPAT-LYSO-L7: 2.5 x 2.5 x 28 cm, Nov, 2009

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2

Proton Induced Damage

The proton induced absorption in LYSO is 1/5 of PWO Net effect of damage is smaller for short light path

January 11, 2013

Damage in 5 mm LYSO Plates

Two 5 mm thick LYSO plates went through γ-ray irradiation to 10 Mrad with degradation in both EWLT and LO less than 10%. Since damage does not recover, so is easy to be monitored.

EW	EWLT	L.O.	E	WLT loss (%)	L.O. loss (%)			
Samples	es (%)	(p.e./MeV)	10 ⁵ rad	10 ⁶ rad	10 ⁷ rad	10 ⁵ rad	10 ⁶ rad	10 ⁷ rad	
SIC-A1105-1	76.3	3657.9	0.9	1.4	1.8	1.3	2.5	3.4	
SIC-A1105-2	77.2	3846.1	2.3	2.5	2.6	4.4	7.7	9.1	

January 11, 2013

CMS Forward Calorimeter Upgrade

January 11, 2013

January 11, 2013

Talk Presented at the Joint CPAD and Instrumentation Frontier Community Meeting by Ren-Yuan Zhu, Caltech

Alternative Fast Crystals

Talk in CMS Forward Calorimetry Task Force Meeting, CERN, June 27, 2012

	LSO/LYSO	GSO	YSO ^①	Csl	BaF ₂	CeF ₃	CeBr ₃ 2	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) ⁹
Density (g/cm ³)	7.40	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.70	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.10	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54.0	51.6	50.8	45.6	47.3	45.6	-
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.90	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.80	1.95	1.50	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	141	15 49	153	35
Decay Time ^a (ns)	40	73	60	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.3	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a.

- At the wavelength of the emission maximum. b.
- Top line: slow component, bottom line: fast component. 1. N. Tsuchida et al Nucl. Instrum. Methods Phys. Res. A, 385 (1997) 290-298 http://www.hitachi-chem.co.jp/english/products/cc/017.html

2. W. Drozdowski et al. IEEE TRANS. NUCL. SCI, VOL.55, NO.3 (2008) 1391-1396 Chenliang Li et al, Solid State Commun, Volume 144, Issues 5-6 (2007),220-224 http://scintillator.lbl.gov/

- 3. http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML PAGES/216.html
- Relative light yield normalized to the light yield of LSO c.

d. At room temperature (20°C)

Softening point #.

Rising Time for 1.5 X₀ Samples

Talk in the time resolution workshop at U. Chicago, 4/28/2011: Agilent MSO9254A (2.5 GHz) DSO with 0.14 ns rise time Hamamatsu R2059 PMT (2500 V) with rise time 1.3 ns

Figure of Merit for Timing

20

FoM is calculated as the LY in 1^{st} ns obtained by using light output and decay time data measured for 1.5 X₀ crystal samples.

Crystal Scintillators	Relative LY (%)	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	Total LO (p.e./MeV, XP2254B)	LO in 1ns (p.e./MeV, XP2254B)	LO in 0.1ns (p.e./MeV, XP2254B)	LY in 0.1ns (photons/MeV)
BaF ₂	40.1	91	650	9	0.9	1149	71.0	11.0	136.6
LSO:Ca,Ce	94	100	30			2400	78.7	8.0	110.9
LSO/LYSO:Ce	85	100	40			2180	53.8	5.4	75.3
CeF ₃	7.3	100	30			208	6.8	0.7	8.6
BGO	21	100	300			350	1.2	0.1	2.5
PWO	0.377	80	30	20	10	9.2	0.42	0.04	0.4
LaBr ₃ :Ce	130	100	20			3810	185.8	19.0	229.9
LaCl ₃ :Ce	55	24	570	76	24	1570	49.36	5.03	62.5
Nal:Tl	100	100	245			2604	10.6	1.1	14.5
Csl	4.7	77	30	23	6	131	7.9	0.8	10.6
CsI:TI	165	100	1220			2093	1.7	0.2	4.8
Csl:Na	88	100	690			2274	3.3	0.3	4.5

The best crystal scintillator for ultra-fast timing is BaF₂ and LSO(Ce/Ca) and LYSO(Ce). LaBr₃ is a material with high potential.

BaF₂ for Very Fast Calorimeter

D. Hitlin, Talk in Session B

The fast component of BaF₂ crystals at 220 nm has a similar light output as pure CsI and sub-ns decay time.

Spectroscopic selection of fast component may be achieved with solar blind photocathode or short pass filter.

January 11, 2013

The HHCAL Detector Concept

January 11, 2013

Talk Presented at the Joint CPAD and Instrumentation Frontier Community Meeting by Ren-Yuan Zhu, Caltech

22

Candidate Crystals for HHCAL

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	PbWO ₄ (PWO)	PbF ₂	PbClF	Bi ₄ Si ₃ O ₁₂ (BSO)
ρ (g/cm³)	7.13	8.29	7.77	7.11	6.8?
λ _ι (cm)	22.8	20.7	21.0	24.3	23.1
n @ λ _{max}	2.15	2.20	1.82	2.15	2.06
τ _{decay} (ns)	300	30/10	?	30	100
λ _{max} (nm)	480	425/420	?	420	470
Cut-off λ (nm)	310	350	250	280	300
Light Output (%)	100	1.4/0.37	?	17	20
Melting point (°C)	1050	1123	842	608	1030
Raw Material Cost (%)	100	49	29	29	47

January 11, 2013

Search for Scintillation in Doped PbF₂

January 11, 2013

24

January 11, 2013

Talk Presented at the Joint CPAD and Instrumentation Frontier Community Meeting by Ren-Yuan Zhu, Caltech

25

Large Size BSO Sample

Crystal Calorimeter Summary

- Bright, fast and radiation hard LSO/LYSO crystals may be used for a total absorption ECAL, as well as a sampling ECAL where resolution at low energies is less crucial, such as the CMS forward calorimeter at HL-LHC
- Crystal calorimeters with more than ten times faster rate/timing capability may be achieved at the project X by using the sub-ns decay time of the BaF₂ fast scintillation component.
- Crystals (PbF₂, PbFCl & BSO) may provide a foundation for a homogeneous hadron calorimeter with dual readout for both Cherenkov and scintillation light to achieve good jet mass resolution for ILC/CLIC.
- Novel materials, such as crystals, ceramics and glasses, may play important role in future HEP experiments.

January 11, 2013

Transparent Ceramic Scintillators for LHC Calorimetry January 2013

N.J. Cherepy, Z.M. Seeley, S.A. Payne Lawrence Livermore National Laboratory, Livermore, CA 94550

Thanks for discussions: Ren-Yuan Zhu, Roger Rusack, Sarah Eno, Erik Ramberg, Francesca Nessi-Tedaldi

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Transparent Ceramics: A route to high-melting point oxide polycrystalline optical materials for a range of applications

<u>Advantages</u>

- WIDE RANGE OF STRUCTURES POSSIBLE Polycrystalline transparent ceramics are *sintered*, never melted, providing access to a wide range of oxide crystal structures that are not growable as single crystals
- NEAR NET SHAPE FABRICATION Ability to form large plates, long rods, etc.
- LOW COST Furnace costs low since sintering complete in <24 hrs

LLNL transparent ceramics fabrication facility is unique for high-throughput sample production and optics fabrication up to 10" diameter

Radiation Hardness

Initial study shows (A) GYGAG(Ce) transparent ceramic more resistant to darkening than (B) Standard glass scintillator

Many options for *dense* transparent ceramics with *fast* decay, *high* radiation damage threshold, *low* n_o activation, and *formable* in large size at low cost

Crystal structure	Scintillator	ρ (g/cm3)	Z _{max}	λ _{max} (nm)	Decay (ns)	Light Yield (Ph/MeV)	511 keV Rad. Length (cm)
Must be cubic	Ideal	>8	<72	~450	<25	>8,000	0.9
	Acceptable	>5	<72	>340	<50	>400	<2.5
GARNET	A ₃ B ₅ O ₁₂ (Ce): A = Gd, Lu, Y B = Al, Ga, Sc	5.8 - 6.8	71	530	20-80	up to 60,000	1 -2
PEROVSKITE	ABO₃(Ce) : A = Sr, Ba B = Ti, Zr, Hf	6 - 8	72	400	50	up to 10,000	0.7-2
BIXBYITE	A ₂ O ₃ (undoped) : A = Gd, La, Y, Lu, Ce	5 - 9.4	71	400- 600	30	up to 20,000	0.73-2.3
FLUORITE	AO ₂ (undoped) : A = Zr, Hf, Ce	5.7 - 8	72	400- 600	30	no data available	0.7-2

Proposed project plan for transparent ceramic calorimetry materials:

- Analyze neutron activation & fission cross-sections of elements; identify cubic oxide candidate structures
- Fabricate small <0.1 cm³ samples identify those formable with high transparency
- Test optical and scintillation properties; radiation hardness
- Optimize fabrication methods
- Scale up best candidates, send to partners for testing
- Identify and fine-tune the processing of best candidate
- Transfer technology to industrial partner for production

2nd Workshop for the HHCAL

32

May 9, 2010, Beijing: http://indico.ihep.ac.cn/conferenceTimeTable.py?confld=1470

1) HHCAL and General Requirement:

Gene Fisk, FNAL: "<u>Fermilab's History in the Development of Crystals, Glasses and Si Detector Readout for</u> <u>Calorimetry</u>"

Adam Para, FNAL: "<u>Scintillating Materials for Homogeneous Hadron Calorimetry</u>" Steve Derenzo, LBL: "<u>Search for Scintillating Glasses and Crystals for Hadron Calorimetry</u>" Paul Lecoq, CERN: "A CERN Contribution to the Dual Readout Calorimeter Concept"

2) Materials for HHCAL (I) :

Alex Gektin, SCI: "<u>Crystal Development for HHCAL: Physics and Technological Limits</u>" Liyuan Zhang, Caltech: "<u>Search for Scintillation in Doped Lead Fluoride for the HHCAL Detector Concept</u>" Guohao Ren, SIC: "<u>Development of Halide Scintillation Crystals for the HHCAL Detector Concept</u>" Hui Yuan, SIC: "<u>BSO Crystals Development with the Modified Multi-crucible Bridgman Method for the</u> <u>HHCAL Detector Concept</u>"

3) Materials for the HHCAL (II) followed by discussions

Mingrong Zhang, BGRI: "<u>R&D on Scintillation Crystals and Special Glasses at BGRI</u>" Tiachi Zhao, U Washington/IHEP and Ningbo University: "<u>Study of Dense Scintillating Glass Samples</u>" Jing Tai Zhao, SIC: "<u>Status of Scintillating Ceramics and Glasses at SIC and Their Potential Applications for</u> <u>the HHCAL Detector Concept</u>"

Richard, Wigmans, Texas Tech University: "Some thoughts about homogeneous dual-readout calorimeters"

3rd Workshop for the HHCAL

October 31, 2010, Knoxville: http://www.nss-mic.org/2010/program/ListProgram.asp?session=HC1,2,3,4

- 1. A. Para, Prospects for High Resolution Hadron Calorimetry
- 2. G. Mavromanolakis , Studies on Dual Readout Calorimetry with Meta-Crystals
- 3. D. Groom, <u>Degradation of resolution in a homogeneous dual readout hadronic</u> <u>calorimeter</u>
- 4. S. Derenzo, <u>High-Throughput Synthesis and Measurement of Candidate Detector</u> <u>Materials for Homogeneous Hadronic Calorimeters</u>
- 5. M. Poulain, <u>Fluoride Glasses: State of Art and Prospects</u>
- 6. I. Dafinei, <u>High Density Fluoride Glasses</u>, <u>Possible Candidates for Homogeneous</u> <u>Hadron Calorimetry</u>
- 7. P. Hobson, Prospects for Dense Glass Scintillators for Homogeneous Calorimeters
- 8. G. Dosovitski, <u>Potential of Crystalline, Glass and Ceramic Scintillation Materials for</u> <u>Future Hadron Calorimetry</u>
- 9. Tianchi Zhao, Study on Dense Scintillating Glasses

10. Jin-tai Zhao, <u>BSO-Based Crystal and Glass Scintillators for Homogeneous Hadronic</u> <u>Calorimeter</u>

- 11. Guohao Ren, Development of RE-Doped Cubic PbF2 and PbClF Crystals for HHCAL
- 12, N. Cherepy, Transparent Ceramic Scintillators for Hadron Calorimetry
- 13. J. Dong, Experimental Study of Large Area GEM

14. H. Frisch, <u>The Development of Large-Area Flat-Panel Photodetectors with Correlated</u> <u>Space and Time Resolution</u>