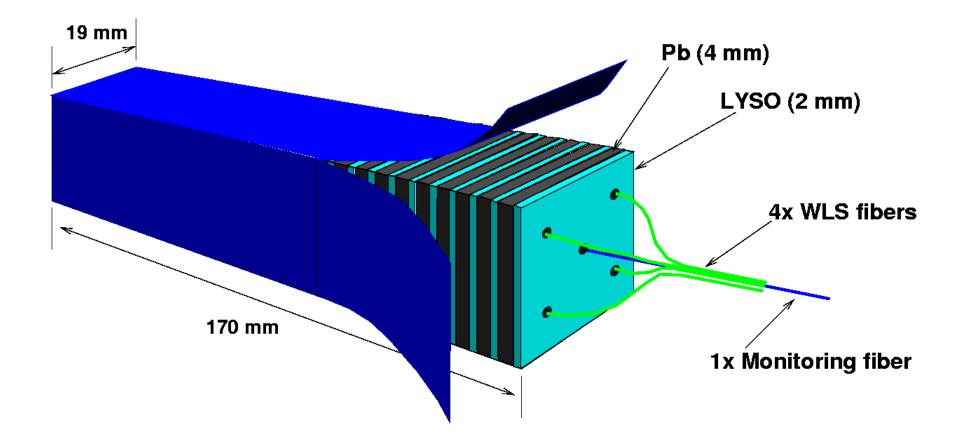


LYSO Shashlik Light Collection and Fast Crystal Choice

Ren-Yuan Zhu

California Institute of Technology


December 12, 2012

LYSO-Pb Shashlik Cell

Presented in the 8/30/12 forward calorimetry taskforce meeting

LYSO Shashlik Cell Design

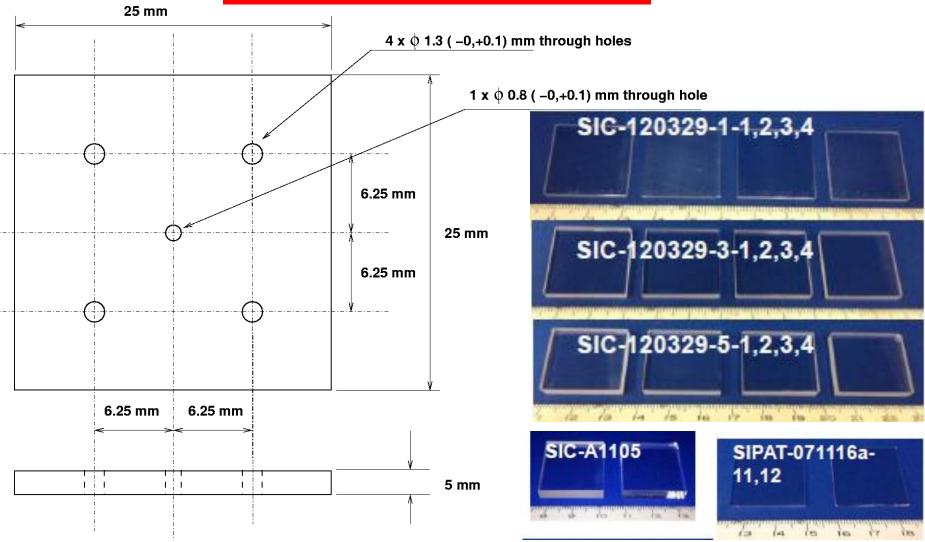
		LHCb	Plan-1	Plan-2	
		Lead (Pb)	Lead (Pb)	Tungsten (W)	
	Density (g/cm3)	11.4	11.4	19.3	
	Radiation Length (cm)	0.56	0.56	0.35	
Absorber	Moliere Radius (cm)	1.60	1.60	0.93	
	dE/dX (MeV/cm)	12.74	12.74	22.1	
	Thickness (mm)	2	4	2.5	
	Plates number	66	28	28	
		BASF-165 Polystyrene (Sc)	LYSO	LYSO	
	Density (g/cm3)	1.06	7.4	7.4	
	Light Yield (photons/MeV)	5200	30000	30000	
Scintillator	Radiation length (cm)	41.31	1.14	1.14	
Scinuliator	Moliere Radius (cm)	9.59	2.07	2.07	
	dE/dX (MeV/cm)	2.05	9.55	9.55	
	Plate Thickness(mm)	4	2	2	
	Plates number	67	29	29	
		Kurarray Y-11(250)	Kurarray Y-11(250)	Kurarray Y-11(250)	
WLS Fiber	Diameter (mm)	1.2	1.2	1.2	
	Number /Cell	16	4	4	
	Total Depth (X0)	24.22	25.09	25.09	
	Sampling Fraction (MIPs)	0.25	0.28	0.26	
	Total Physical Length (cm)	40	17	12.8	
	Total Sc Length (cm)	26.8	5.8	5.8	
	Absorber Weight Ratio	0.84	0.75	0.76	
Cell Properties	Scintillator Weight Ratio	0.16	0.25	0.24	
Cen Properues	Average Density (g/cm3)	4.47	10.04	13.91	
	Average Radiation Length (cm)	1.65	0.68	0.51	
	Average Moliere Radius (cm)	3.6	1.7	1.2	
	Transverse Dimension (cm)	4.1	1.9	1.4	
	Sc-depth/Total-depth in X0	0.0268	0.2028	0.2028	
	WLS Fiber Density (N/cm2)	0.97	1.06	2.07	
MIPs Energy Deposition	Sc plates (MeV)	54.94	55.39	55.39	
Light Yield using MIPs	Photon Electrons/GeV	3077	17897	17897	
Signal of MIPs	Photon Electrons / MIP	169	991	991	
Module Properties	Energy Resolution (a, %)*	8.2	5.4	5.6	

* Assuming the same relation between stochastic term "a" and (Sc thickness/Sampling Fraction)^{1/2} for LYSO crystal and plastic scintillator based Shashlik calorimeters.

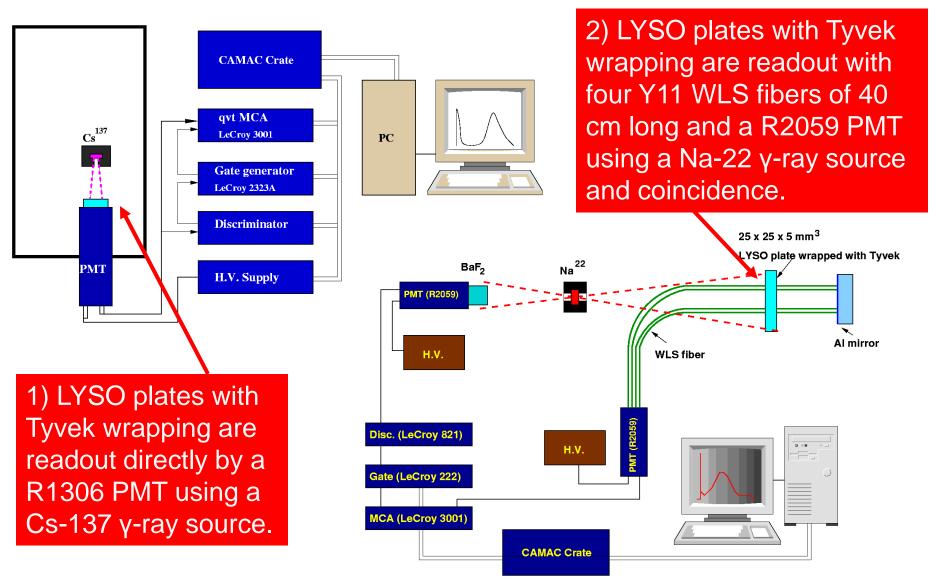
Cell Design Constraints

- Crystal Depth / Total Absorption Depth: < 0.2</p>
- Total Cell Depth: ~ 25 X₀
- Sampling Fraction (MIPs): ~ 25%
- Lateral Dimension: ~ 1.1 Rm
- WLS Fiber Density: ~ 1/cm²
- WLS Fiber distribution: uniform
- Thicknesses of absorber and scintillation plates: reasonable for manufacture

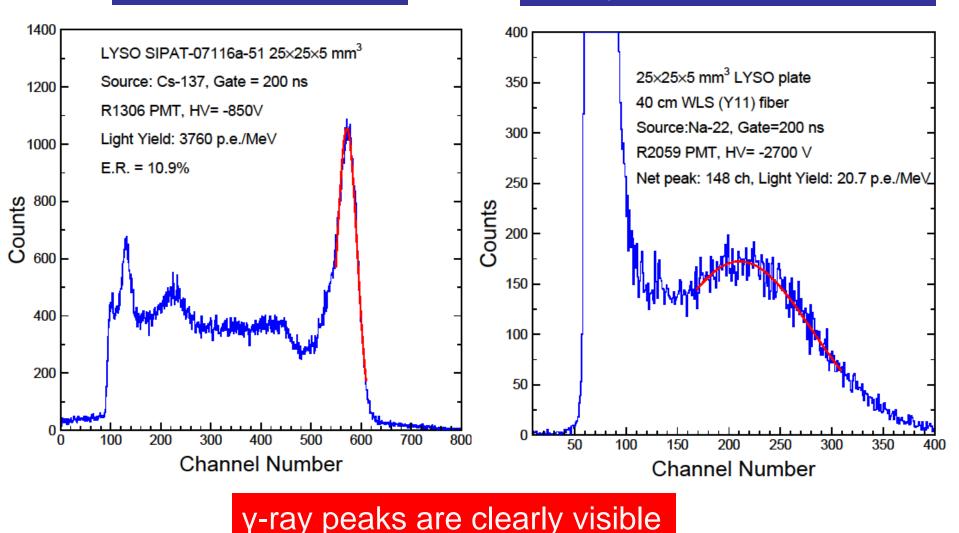
References


- Irina Machikhiliyan for the LHCb calorimeter group, "The LHCb electromagnetic calorimeter", XIII International Conference on Calorimetry in High Energy Physics (Calor2008).
- 2) A. Bamberger et al., "The ZEUS forward plug calorimeter with lead-scintillator plates and WLS fiber readout", NIM A450 (2000), p 235-252.
- 3) C.S. Atoyan et al., "Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout", NIM A320 (1992), p144-154.
- 4) L. labarga and E. Ros, "Mont Carlo study of the light yield, uniformity and energy resolution of electromagnetic calorimeter with a fiber readout system", NIM A249 (1986), p228-234.

Three LYSO Plates with Holes


 $25 \times 25 \times 5$, 3 and 1.5 mm³

Two Measurement Setups



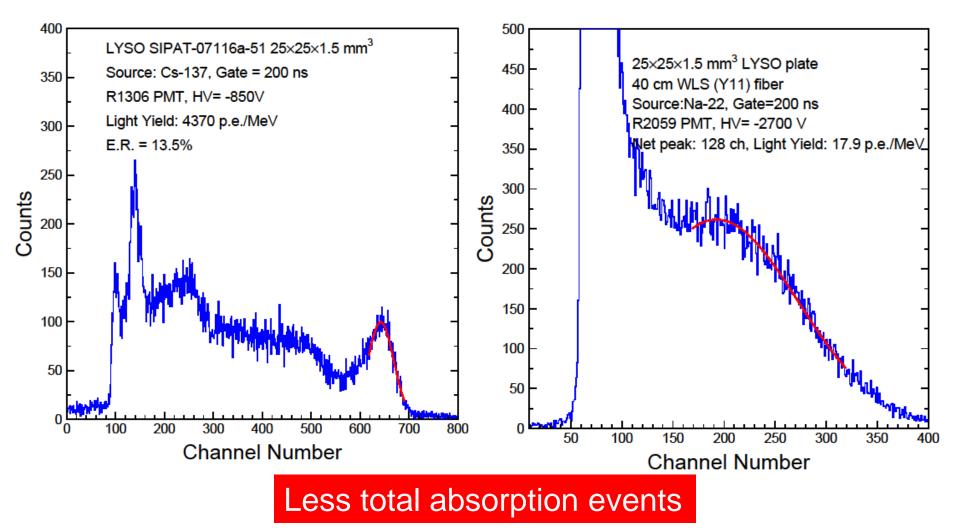
PHS of 5 mm LYSO Plate

LYSO $25 \times 25 \times 5 \text{ mm}^3$

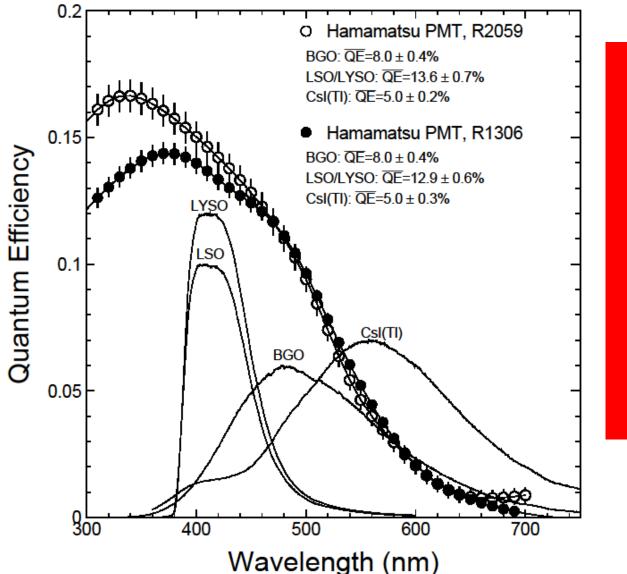
5 mm plate & 4 x 40 cm Y11 fiber

PHS of 3 mm LYSO Plate

LYSO $25 \times 25 \times 3 \text{ mm}^3$ 3 mm plate & 4 x 40 cm Y11 fiber 400 1000 LYSO SIPAT-07116a-51 25×25×3 mm3 25×25×3 mm³ LYSO plate 350 Source: Cs-137, Gate = 200 ns 40 cm WLS (Y11) fiber 800 R1306 PMT, HV= -850V Source:Na-22, Gate=200 ns 300 Light Yield: 3970 p.e./MeV R2059 PMT, HV= -2700 V E.R. = 11.8% Net peak: 174 ch, Light Yield: 24.3 p.e./MeV 250 600 Counts Counts 200 400 150 100 200 50 n 0 100 150 200 250 350 50 300 200 600 700 400 100 300 400 500 800 Channel Number **Channel Number**


γ-ray peaks are clearly visible

LYSO $25 \times 25 \times 1.5 \text{ mm}^3$


1/5 mm plate & 4 x 40 cm Y11 fiber

PMT Quantum Efficiency

Light Output (LO) measured in p.e./MeV are converted to Light Yield (LY) in photons/MeV by taking out the QE of the PMT

LY = LO / QE

Light Collection Efficiencies

Samples	5 mm LYSO	3 mm LYSO	1.5 mm LYSO	LHCb cell*
LO ₁ (p.e. /MeV)	3760	3970	4370	
LY ₁ (Photons /MeV)	29150	30780	33880	5200
LO ₂ (p.e./MeV)	20.7	24.3	17.9	3.1
MIP (p.e./55 MeV)	1140	1340	990	169
LO ₂ /LO ₁ (%)	0.55	0.61	0.41	
LO ₂ /LY ₁ (%)	0.07	0.08	0.05	0.06

* 2009 J. Phys.: Conf. Ser. 160 012047.

Measured light collection efficiencies consist with LHCb data

Alternative Fast Crystals

R.-Y. Zhu, Talk in CMS Forward Calorimetry Task Force Meeting, CERN, June 27, 2012

	LSO/LYSO	GSO	YSO ¹	Csl	BaF ₂	CeF ₃	CeBr ₃ 2	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) [€]
Density (g/cm ³)	7.40	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.70	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.10	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54.0	51.6	50.8	45.6	47.3	45.6	-
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.90	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.80	1.95	1.50	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	4.2 1.3	42 4.8	8.6	141	15 49	153	35
Decay Time ^a (ns)	40	73	60	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.3	-1.4	-1.9 0.1	~0 . Instrum. M	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

- b. At the wavelength of the emission maximum.
- c. Relative light yield normalized to the light yield of LSO http://scintillator.lbl.gov/
- d. At room temperature (20°C)
- #. Softening point

Dec 12, 2012

1. N. Tsuchida et al *Nucl. Instrum. Methods Phys. Res. A*, 385 (1997) 290-298 http://www.hitachi-chem.co.jp/english/products/cc/017.html

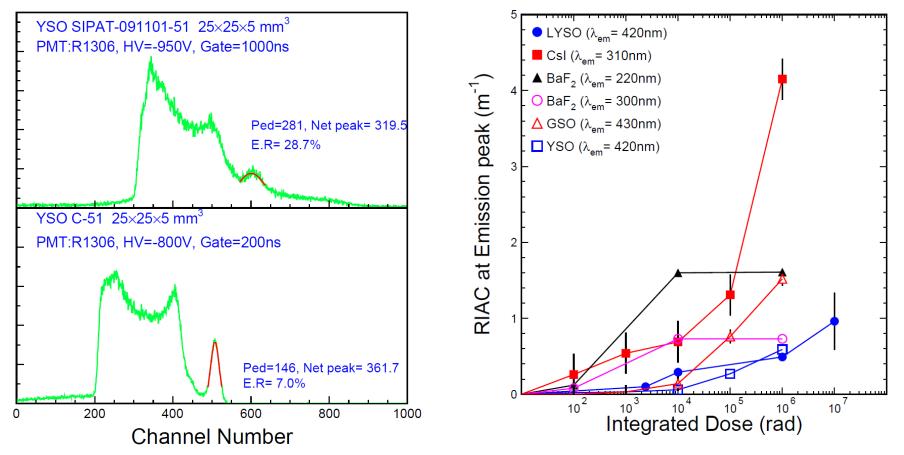
 W. Drozdowski et al. *IEEE TRANS. NUCL. SCI*, VOL.55, NO.3 (2008) 1391-1396 Chenliang Li et al, *Solid State Commun*, Volume 144, Issues 5–6 (2007),220–224
 http://scintillator.lbl.gov/

3. <u>http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx</u> <u>http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html</u>

YSO Samples

Vendor	Sample ID	Received Date	Dimension (mm³)	Polish
SIPAT	091101-31,32	4/17/2012	25×25×3	Six faces
JIPAI	091101-51,52	4/17/2012	25×25×5	Six faces
	C-11,12	10/11/2012	25×25×1.5	Six faces
	C-31,32	10/11/2012	25×25×3	Six faces
CPI	C-51,52	10/11/2012	25×25×5	Six faces
	C-Cube	10/11/2012	40×40×46	Six faces

Experiments


- Transmittance, PL
- LO, Decay, PHS and Uniformity by PMT: R1306, grease coupling, Cs-137
- The cube sample went through γ-ray irradiations for 100, 1K, 10K, 100K, 1M and 10M rad

Crystal Radiation Hardness

	ample EWLT (%)		EWLT loss (%)				LO loss (%)					
Sample			10 ² rad	10 ³ rad	10 ⁴ rad	10 ⁵ rad	10 ⁶ rad	10 ² rad	10 ³ rad	10 ⁴ rad	10 ⁵ rad	10 ⁶ rad
YSO C-Cube	66.2	2123	0±0.2	0.15±0.2	0.76±0.2	3.3±0.2	6.5±0.2	0.24±1.0	-0.52±1.0	0.05±1.0	2.3±1.0	6.5±1.0

Dec 12, 2012

Presented in Forward Calorimetry Taskforce Meeting, CERN, by Ren-Yuan Zhu, Caltech

YSO is not yet an Alternative

- YSO is yet to be qualified as LYSO, e.g. hadrons damage etc.
- The cost of YSO is not extremely low because of its high melting point as LYSO. Its mass production cost is expected to be lower than LYSO, say 50%?. To achieve the same sampling fraction, however, the amount of YSO needed would be 60% more than LYSO, so the overall saving is no significant.
- Unlike LYSO there are not many YSO vendors because of its lacking application in γ-ray spectroscopy or PET.

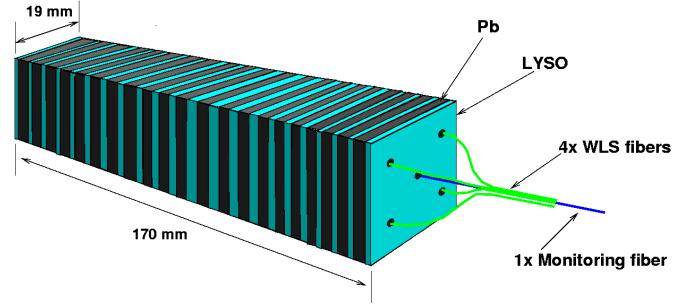
Comments on Fast Crystals

+ : pro.				- : con.			0 : OK.				
		LSO/LYSO	GSO	YSO	Csl	BaF₂	CeF ₃	CeBr ₃	LaCl ₃	LaBr ₃	Plastic scintillator (RP-408)
Light Yie	ld	+	0	+	—	—	-	+	0	+	0
Radiation Hardnes		+	_	+	-	—	0	N/A	N/A	N/A	—
Neutron x-se	ection	N/A	—	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Emission Mar Y11 WLS Exc		+	+	+	—	—	—	0	0	0	+
Hygroscop	icity	+	+	+	0	0	0	—	—	—	+
Unit cos	st	0	0	+	+	+	+	—	—	—	+
Cell cos	it	0	0	0	+	+	+	—	—	—	+
Mass Produ	ction	+	0	0	+	÷	0	N/A	N/A	N/A	+

LSO/LYSO is the front runner. YSO may serve as an alternative.

Dec 12, 2012

Summary


- The light collection efficiency (LCE) of LSO/LYSO plates with 4 x Y11 fiber readout is at a level of 0.5%. This result is consistent with the LHCb data.
- 3 mm thick LYSO plate seems having a better LCE than that of 1.5 mm and 5 mm.
- Among all fast crystal scintillators LSO/LYSO crystals are the best candidate for the sampling crystal calorimeter option for the endcap ECAL at HL-LHC. YSO may also serve as an alternative with further development.

Future Plan

- Measure Shashlik cell longitudinal response uniformity by moving the LYSO plate along the Y11 WLS fibers.
- Measure Shashlik cell transverse response uniformity by injecting collimated γray source into LYSO plates.
- Build the first rectangular cell, and test it with cosmic MIPs.
- Further investigation on alterative fast crystals, such as YSO.
- Harvey's proposal: quartz on quartz fibers with Y11 or similar dye incorporated.
 Look whether it can be incorporated in the core, or at the core-cladding interface.
- Optimizing Shashlik cell design: plate thickness, sampling fraction etc.

Presented in Forward Calorimetry Taskforce Meeting, CERN, by Ren-Yuan Zhu, Caltech