

Investigation on GSO:Ce Crystals

Ren-Yuan Zhu California Institute of Technology

October 30, 2012

Talk at CMS Forward Calorimetry Task Force Meeting

CMS Forward Calorimeter Upgrade

October 30, 2012

Shashlik Cells with Pb/W Absorbers

R.-Y. Zhu, presented in the Forward Calorimetry Task Force meeting on 8/30/2012

Another Option: Varied Sampling

The thickness of crystal plates may be adjusted according to the longitudinal shower profile without cost increase. An optimized sampling with varied crystal plate thickness may provide a better resolution for photons and electrons, but...

October 30, 2012

Crystals Options

While LSO/LYSO might be seen as the only scintillating crystal which might survive the sever radiation environment expected at HL-LHC, many fast crystals may be considered as candidates of the active material for a sampling calorimeter option. This is due to the fact that the consequence of radiation induced absorption is much reduced because of the short light path for the sampling option. To avoid calibration difficulty, however, damage recovery, which leads a dose rate dependent damage, is not preferred.

Other Fast Crystal Candidates

R.-Y. Zhu, Talk in CMS Forward Calorimetry Task Force Meeting, CERN, June 27, 2012

	LSO/LYSO	GSO❶	YSO	Csl	BaF ₂	CeF ₃	CeBr ₃ 0	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) [©]
Density (g/cm ³)	7.40	6.71	4.54	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#
Radiation Length (cm)	1.14	1.38	3.04	1.86	2.03	1.70	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.87	3.57	3.10	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.3	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54.0	51.6	50.8	45.6	47.3	45.6	-
dE/dX (MeV/cm)	9.55	8.88	6.70	5.56	6.52	8.42	6.65	5.27	6.90	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.80	1.95	1.50	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	35	40	4.2 1.3	42 4.8	8.6	141	15 49	153	35
Decay Time ^a (ns)	40	65	70	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.7	-0.3	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

- b. At the wavelength of the emission maximum.
- c. Relative light yield normalized to the light yield of LSO
- d. At room temperature (20°C)
- Softening point
- October 30, 2012

- 1. N. Tsuchida et al *Nucl. Instrum. Methods Phys. Res. A*, 385 (1997) 290-298 http://www.hitachi-chem.co.jp/english/products/cc/017.html
- W. Drozdowski et al. IEEE TRANS. NUCL. SCI, VOL.55, NO.3 (2008) 1391-1396 Chenliang Li et al, Solid State Commun, Volume 144, Issues 5–6 (2007),220–224 <u>http://scintillator.lbl.gov/</u>
- 3. <u>http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx</u>

Talk Presented at CMS Forward Calor Http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html

GSO:Ce Samples from HITACHI

Sample ID	Received Date	Dimension	Polish		
GSO H1	8/21/2012	$25 \times 25 \times 5 \text{ mm}^3$	Two faces (25 $ imes$ 25 mm ² faces)		
GSO H2	8/21/2012	$25 \times 25 \times 5 \text{ mm}^3$	Two faces (25 $ imes$ 25 mm ² faces)		
GSO H3	8/21/2012	$21 \times 21 \times 21$ mm ³	Six faces		
GSO H4	8/21/2012	$21 \times 21 \times 21$ mm ³	Six faces		

Experiments

- All samples annealed at 300°C (600 minutes)
- Optical properties: Transmittance and Photo-Luminescence
- Light Output (LO), Pulse Height Spectrum (PHS) and Uniformity measured by R1306 PMT with a grease coupling and using a Cs-137 source.

GSO:Ce Transmittance

GSO:Ce Photo-Luminescence

GSO:Ce Decay Time

Measured with Edinburgh FLS920 Fluorescence Spectrometer

Fitting function:

$$R(t) = B_1 \exp\left\{-\frac{t}{\tau_1}\right\}$$

Excited with eV Photons: 40 ns

GSO:Ce Pulse Height Spectra

Excellent energy resolution, compatible with LSO/LYSO

GSO:Ce Decay kinetics

Measured with Cs-137 Gamma-rays: 80 ns

GSO:Ce Scintillation Decay Time

S. Shimizu et al, NIM A486, 2002, 490

Decay time found as a function of excitation energy

October 30, 2012

GSO:Ce Plate Response Uniformity

Five position of source vertically irradiated

October 30, 2012

GSO:Ce Plate Response Uniformity

GSO:Ce LT Damage/Recovery

Damage in transmittance is small (3%) up to 1 Mrad Recovery observed, indicating a dose rate dependent damage

October 30, 2012

GSO:Ce LO Damage/Recovery

Damage in light output is large (>10%) up to 1 Mrad Irregular behavior in LO under radiation is observed

GSO:Ce Irregular Behavior of LO

Ref 1: K. Kawade et al., JINST, 6, T09004, 2011.

Ref 2: Tanaka et al., NIM A404, 283-294, 1998

October 30, 2012

Summary of GSO:Ce

Vender	Crystal	Cutoff (nm)	EWLT (%)	τ (ns)	LO (p.e./MeV)	E.R. (%)	Uniformity RMS/L.O. (%)
HITACHI	GSO H1	402.1	75.0	78.5	1797.1	9.2	0.60
	GSO H2	402.0	74.7	81.7	1740.9	9.4	0.59
	GSO H3	411.1	68.3	72.6	1251.8	11.0	-
	GSO H4	408.6	69.7	75.1	1258.2	11.3	-

Following issues are observed in GSO:Ce, based on which GSO:Ce is not our candidate for the sampling option.

- Gadolinium has high neutron x-section, and is an expansive material similar to lutetium. Hitachi is a single vendor.
- Its light yield/decay is half/double as compared to LSO/LYSO.
- While radiation damage in transmittance is small, irregular behavior was observed in LO variation under irradiation by us and others. Recovery is also observed, so expect instability.

October 30, 2012