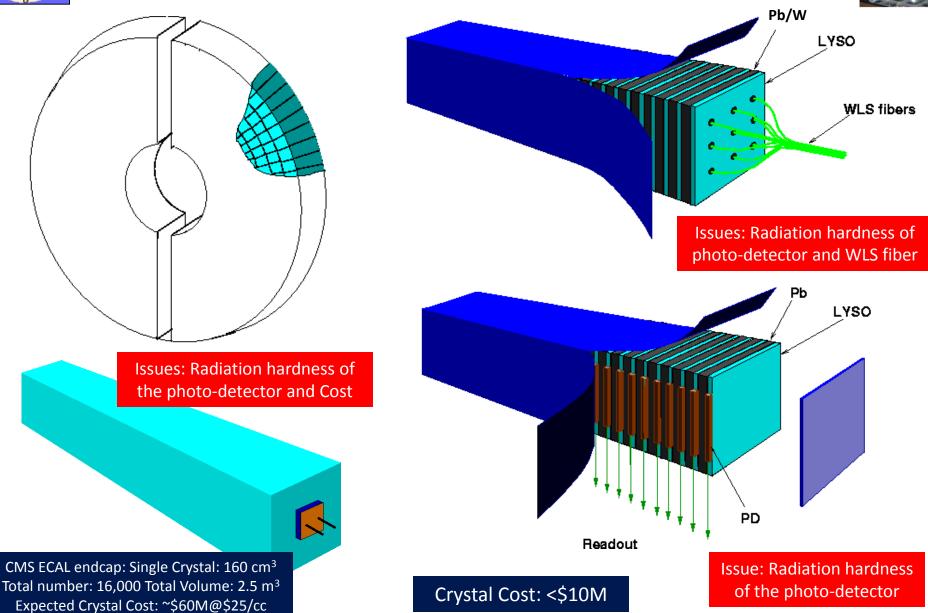


LYSO Crystal Based Shashlik Calorimeter Cell Design


Ren-Yuan Zhu California Institute of Technology August 30, 2012

Talk given at CMS Forward Calorimetry Taskforce Meeting

Options for CMS FCAL Upgrade

August 30, 2012

LYSO Based Shashlik Cell Design

- Square geometry: Hexagonal geometry may be considered if needed.
- Since LYSO is relatively expansive the crystal plate thickness, sampling fraction and total cell length (25 X₀) drive the crystal cost:
 - Thickness of LYSO plates 2 mm: < 2 mm is less cost-effective;
 - LYSO crystal volume < 20% of that needed for the total absorption option (25 X₀ LYSO of 28.5 cm): total LYSO length < 5.8 cm.
- Lateral cell dimension about R_{Moliere} for good shower separation.
- WLS Fiber density ~ 1/cm². Higher density does not help much [4]. Light yield is estimated by using the LHCb data [1].
- Readout can also be at the front allowing longitudinal segmentation.
- We have a cost-effective compact (17/13 cm cell length) Shashlik design with fine granularity (1.9/1.4 cm) for Pb/W absorbers respectively.

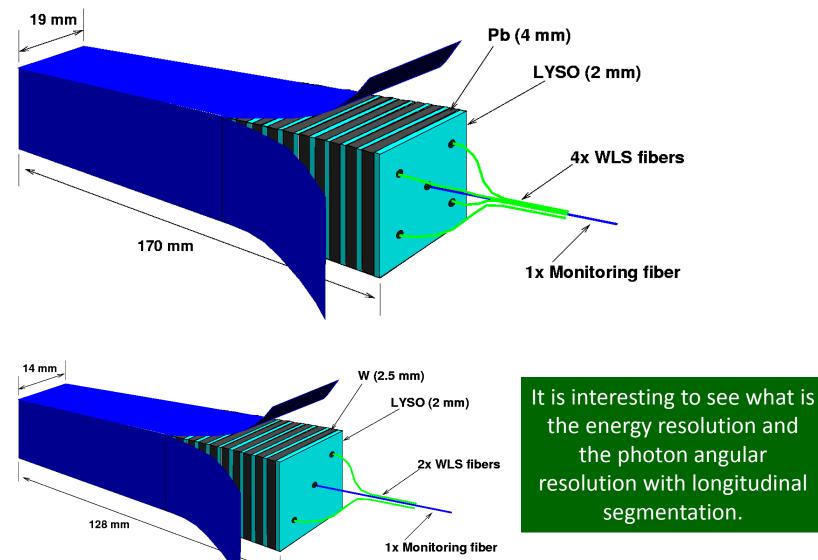
[1] Irina Machikhiliyan for the LHCb calorimeter group, "The LHCb electromagnetic calorimeter", XIII International Conference on Calorimetry in High Energy Physics (Calor2008).

[2] A. Bamberger et al., "The ZEUS forward plug calorimeter with lead-scintillator plates and WLS fiber readout", NIM A450 (2000), p 235-252.

[3] C.S. Atoyan et al., "Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout", NIM A320 (1992), p 144-154.

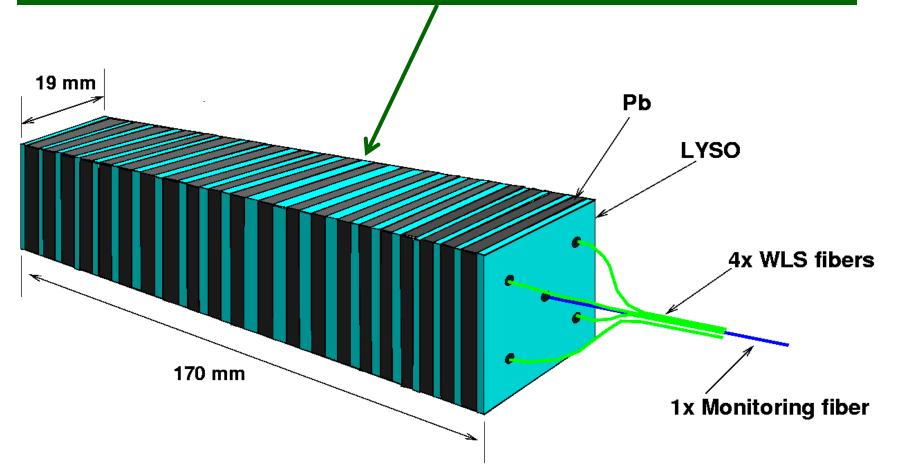
[4] L. labarga and E. Ros, "Mont Carlo study of the light yield, uniformity and energy resolution of electromagnetic calorimeter with a fiber readout system", NIM A249 (1986), p. 228-234.

LSO/LYSO Shashlik Cell Design


Cost constraints: 2 mm think crystal plates and 20% crystal volume

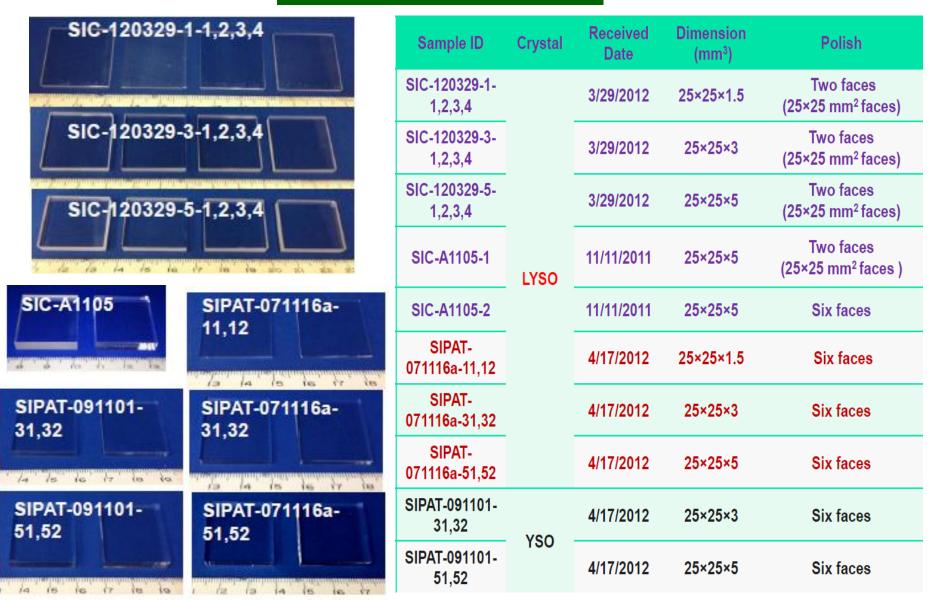
		LHCb	Plan-1	Plan-2	
		Lead (Pb)	Lead (Pb)	Tungsten (W)	
	Density (g/cm3)	11.4	11.4	19.3	
Absorber	Radiation Length (cm)	0.56	0.56	0.35	
Absorber	Moliere Radius (cm)	1.60	1.60	0.93	
	dE/dX (MeV/cm)	12.74	12.74	22.1	
	Thickness (mm)	2	4	2.5	
		BASF-165 Polystyrene (Sc)	LYSO	LYSO	
	Density (g/cm3)	1.06	7.4	7.4	
	Light Yield (photons/MeV)	5200	20000	20000	
Scintillation Plate	Radiation length (cm)	41.31	1.14	1.14	
	Moliere Radius (cm)	9.59	2.07	2.07	
	dE/dX (MeV/cm)	2.05	9.55	9.55	
	Thickness(mm)	4	2	2	
Plates number	Absorber	66	28	28	
Plates number	Scintillator	67	29	29	
		Kurarray Y-11(250)	Kurarray Y-11(250)	Kurarray Y-11(250)	
WLS Fiber	Diameter (mm)	1.2	1.2	1.2	
	Number /Cell	16	4	2	
	Total Depth (X0)	24.22	25.09	25.09	
	Sampling Fraction	0.25	0.28	0.26	
	Total Physical Length (cm)	40	17	12.8	
	Total Sc Length (cm)	26.8	5.8	5.8	
	Absorber Weight Ratio	0.84	0.75	0.76	
Cell Properties	Scintillator Weight Ratio	0.16	0.25	0.24	
centroperties	Average Density (g/cm3)	4.47	10.04	13.91	
	Average Radiation Length (cm)	1.65	0.68	0.51	
	Average Moliere Radius (cm)	3.6	1.7	1.2	
	Transverse Dimension (cm)	4.1	1.9	1.4	
	Sc-depth/Total-depth in X0	0.0268	0.2028	0.2028	
	WLS Fiber Density (N/cm2)	0.97	1.06	1.03	
MIPs Energy Deposition	Sc plates (MeV)	54.94	55.39	55.39	
Light Yield using MIPs	Photon Electrons/GeV	3077	11932	11932	
Signal of MIPs	Photon Electrons / MIP	169	720	702	

Shashlik Cells with Pb/W Absorbers

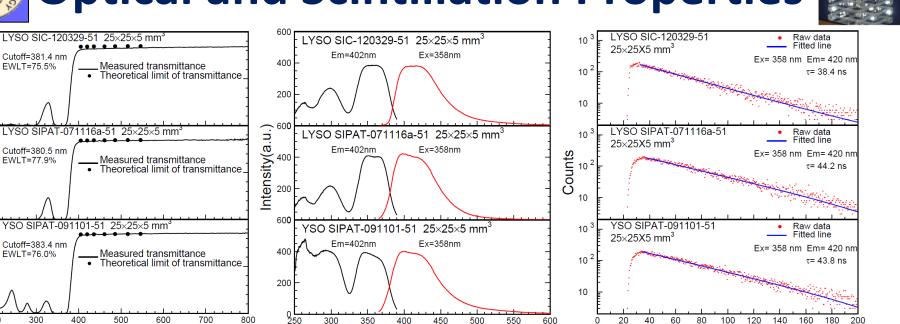


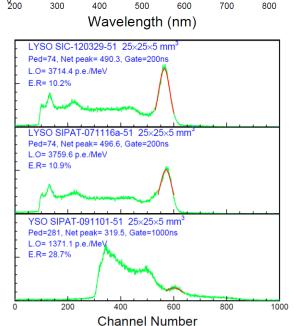
Another Option: Varied Sampling

The thickness of crystal plates may be adjusted according to the longitudinal shower profile without cost increase. An optimized sampling with varied crystal plate thickness may provide a better resolution for photons and electrons, but...



20/4 LYSO/YSO Plates from SIC/SIPAT


1.5 mm, 3 mm and 5 mm thick



August 30, 2012

Optical and Scintillation Properties

Wavelength (nm)

Cutoff=381.4 nm

Cutoff=380.5 nm

Cutoff=383.4 nm

EWLT=76.0%

EWLT=77.9%

EWLT=75.5%

50

50

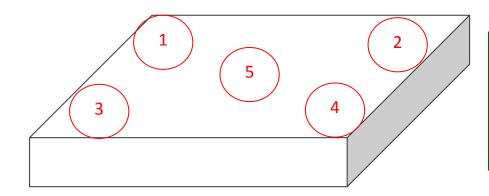
50

August 30, 2012

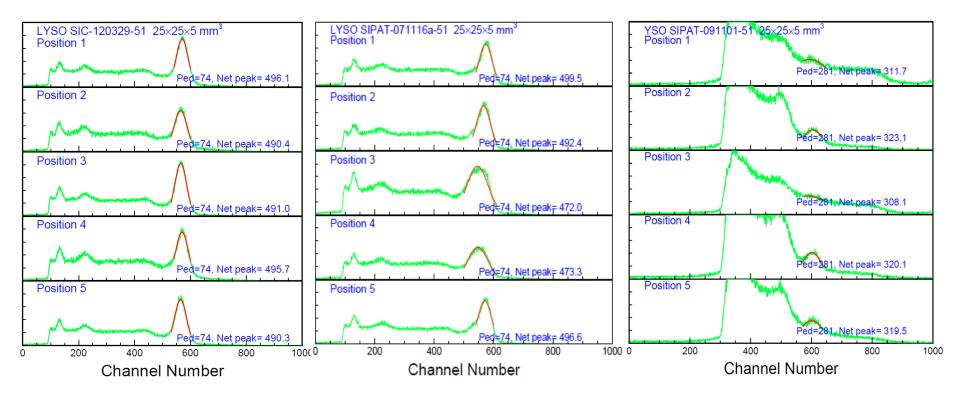
Transmittance (%)

Consistent optical properties observed in transmittance, excitation and photo-luminescence.

Time (ns)

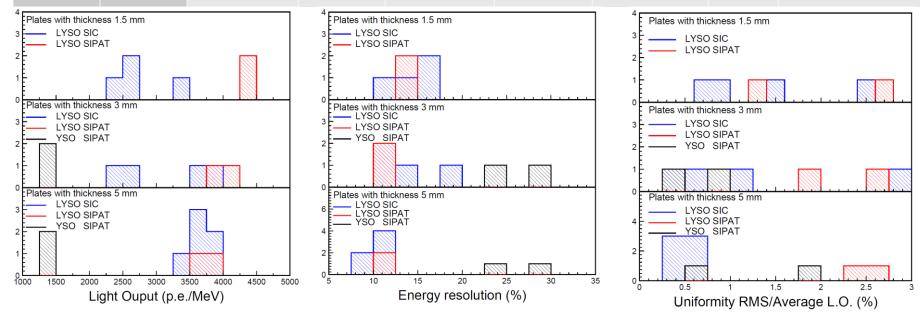

Consistent decay time observed.

YSO crystals, however, have less light output as compared to LYSO, and poorer energy resolution as measured with ¹³⁷Cs source.



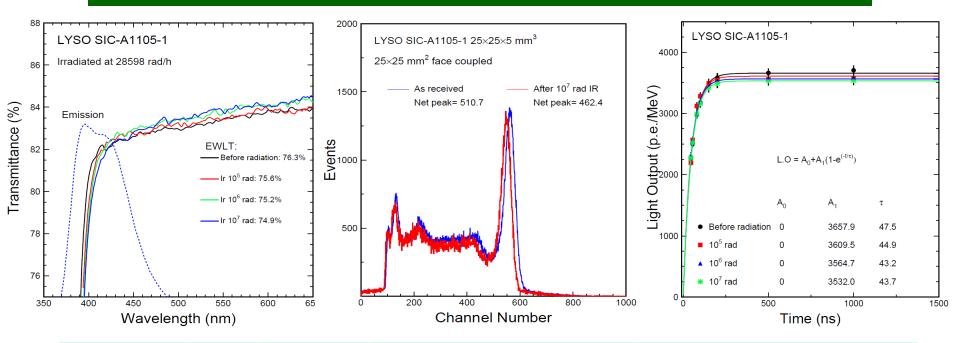
Light Response Uniformity of Plates

Good light response uniformity at a few percent level observed by injecting collimated ¹³⁷Cs source at five positions of the plate.



Summary of Plate Performance

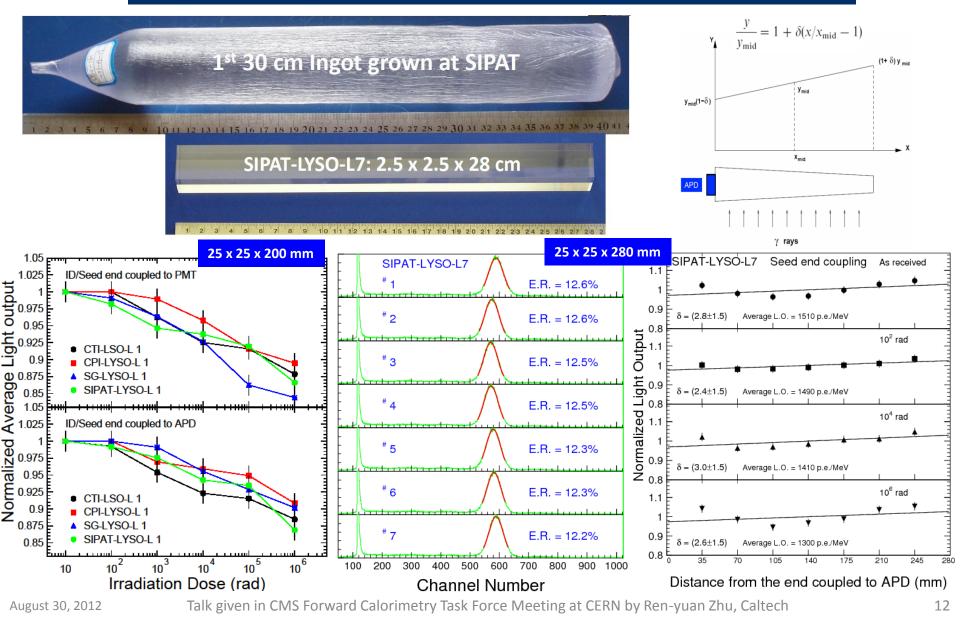
Vender	Crystal	Thickness (mm)	Ave. Cutoff (nm)	Ave. EWLT (%)	Ave. T (ns)	Ave. LO (p.e./MeV)	Ave. E.R. (%)	Ave.Uniformity RMS/L.O. (%)
		1.5	376.2	78.7	36.9	2776.2	14.0	1.38
SIC	LYSO	3.0	379.0	77.9	38.2	3117.1	13.2	1.25
		5.0	381.0	75.8	39.8	3669.7	9.9	0.44
		1.5	375.1	80.3	40.4	4363.5	13.8	2.02
SIPAT L	LYSO	3.0	377.9	79.3	43.1	4009.4	11.7	2.32
		5.0	380.5	78.1	43.5	3734.2	11.5	2.52
		3.0	380.5	79.2	42.7	1440.0	27.0	0.59
SIPAT	YSO	5.0	383.3	78.1	44.0	1363.0	26.7	1.28



LYSO Plate Radiation Hardness

Two 5 mm thick LYSO plates went through γ-ray irradiation to 10 Mrad with degradation in both EWLT and LO less than 10%. Since damage does not recover, so is easy to be monitored.

a	es EWLT (%)	L.O. (p.e./MeV)	E	WLT loss (%)	L.O. loss (%)		
Samples			10 ⁵ rad	10 ⁶ rad	10 ⁷ rad	10 ⁵ rad	10 ⁶ rad	10 ⁷ rad
SIC-A1105-1	76.3	3657.9	0.9	1.4	1.8	1.3	2.5	3.4
SIC-A1105-2	77.2	3846.1	2.3	2.5	2.6	4.4	7.7	9.1


August 30, 2012

North CHNOLOGINA

Rad-Hard Long LYSO Crystals

R.H. Mao, L.Y. Zhang and R.-Y. Zhu, "Quality of a 28 cm Long LYSO Crystal and Progress on Optical and Scintillation Properties", IEEE Trans. Nucl. Sci. NS-59 (2012)

Other Fast Crystal Candidates

R.-Y. Zhu, Talk in CMS Forward Calorimetry Task Force Meeting, CERN, June 27, 2012

	LSO/LYSO	GSO ❶	yso 1	Csl	BaF ₂	CeF ₃	CeBr ₃ 0	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) 윌
Density (g/cm ³)	7.40	6.71	4.54	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#
Radiation Length (cm)	1.14	1.38	3.04	1.86	2.03	1.70	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.87	3.57	3.10	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.3	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54.0	51.6	50.8	45.6	47.3	45.6	-
dE/dX (MeV/cm)	9.55	8.88	6.70	5.56	6.52	8.42	6.65	5.27	6.90	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.80	1.95	1.50	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	35	40	4.2 1.3	42 4.8	8.6	141	15 49	153	35
Decay Time ^a (ns)	40	65	70	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.7	-0.3	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

- b. At the wavelength of the emission maximum.
- c. Relative light yield normalized to the light yield of LSO
- d. At room temperature (20°C)
- Softening point

August 30, 2012

- N. Tsuchida et al Nucl. Instrum. Methods Phys. Res. A, 385 (1997) 290-298 http://www.hitachi-chem.co.jp/english/products/cc/017.html
- W. Drozdowski et al. *IEEE TRANS. NUCL. SCI*, VOL.55, NO.3 (2008) 1391-1396 Chenliang Li et al, *Solid State Commun*, Volume 144, Issues 5–6 (2007),220–224 <u>http://scintillator.lbl.gov/</u>
- 3. http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx

Talk given in CMS Forward Calorimetry Thttp://odg.lbl.gov/2008/AtemicNuclearProperties/HTML_PAGES/216.html

Caltech Plan for FCAL R&D

- The LYSO R&D was supported by an Advanced Detector R&D award from DOE.
- The R&D at Caltech includes studies for fast crystal scintillators to be used for the CMS FCAL upgrade, including long LYSO crystals for the total absorption option and crystal plates for the sampling option with materials ranged from fast crystals, such as BaF₂, CeF₃, CsI, GSO, LSO, LYSO and YSO, to ceramics, such as YAG, LuAG and others. Samples will be procured from various vendors. Their optical and scintillation properties will be characterized at Caltech Crystal Laboratory.
- The R&D program for FCAL at Caltech also includes design of sampling calorimeter cells and prototype construction. Sampling calorimeter cells will be characterized with a cosmic-ray based test stand, and may be used to construct a test beam matrix for a beam test.
- Following this R&D program and further design studies, if successful, the Caltech group would be interested in implementing an LYSO-based forward ECAL for the CMS Upgrade, in partnership with other interested CMS groups.

Caltech Crystal Laboratory

- Overall Goal: develop novel detector concept.
- Investigation of new crystal scintillators, such as CeF₃, LaBr₃, LaCr₃, BSO, PbFCl and Doped PbF₂ etc.
- Investigation of various photo-detectors.
- Radiation hardness study for crystal and ceramic scintillators: BaF₂, BGO, CeF₃, CsI, CsI(TI), GSO, LSO, LYSO, PbF₂, PWO, YSO, YAG, LuAG...
- Prototype building and evaluation at single cell level.

Recent Published Papers

- 1. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``Quality of a 28 cm Long LYSO Crystal and Progress on Optical and Scintillation Properties", IEEE Trans. Nucl. Sci. NS-59 (2012).
- 2. R.-Y. Zhu, ``Radiation damage effects". In Handbook of particle detection and imaging, ed. Grupen, Claus et al. vol. 1 535-555 (2012).
- 3. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, "Fast Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon PIN Diodes and APDs," IEEE Trans. Nucl. Sci. NS-58, 1249-1256 (2011).
- 4. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``LSO/LYSO Crystals for Future High Energy Physics Experiments," 2011 J. Phys.: Conf. Ser. 293 012004
- 5. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``A Search for Scintillation in Doped Cubic Lead Fluoride Crystals," IEEE Trans. Nucl. Sci. NS-57, 3841-3845 (2010).
- 6. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``Effects of Neutron Irradiations in Various Crystal Samples of Large Size for Future Crystal Calorimeter,'' Paper N32-4 in IEEE NSS/MIC Conference Record (2009).
- 7. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``Gamma-ray Induced Radiation Damage in PWO and LSO/LYSO Crystals," Paper N32-5, in IEEE NSS/MIC Conference Record (2009).
- 8. R.-Y. Zhu, "Crystal Calorimeters in the Next Decade," JOP Conference Series 160 (2009) 012017.
- 9. R.-Y. Zhu, "Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future," Invited Paper, Proc. of SPIE Vol. 7079 70790W-1 (2008).
- 10. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``Emission Spectra of LSO and LYSO Crystals Excited by UV Light, X-Ray and Gamma-ray," IEEE Trans. Nucl. Sci. NS-55, 1759--1766 (2008).
- 11. R.H. Mao, L.Y. Zhang and R.-Y. Zhu, "Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics," IEEE Trans. Nucl. Sci. NS-55 2425--2431 (2008).
- 12. J.M. Chen, R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``Gamma-Ray Induced Radiation Damage in Large Size LSO and LYSO Crystal Samples,'' *IEEE Trans. Nucl. Sci.* NS-54 1319--1326 (2007).
- 13. J.M. Chen, R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``Large Size LSO and LYSO Crystals for Future High Energy Physics Experiments,' *IEEE Trans. Nucl. Sci.* NS-54 718--724 (2007).
- 14. J.M. Chen, L.Y. Zhang and R.-Y. Zhu, ``Large Size LSO and LYSO Crystal Scintillators for Future High Energy Physics and Nuclear Physics Experiments,' Nucl. Instr. and Meth. A572 218--224 (2007).
- 15. J.M. Chen, R.H. Mao, L.Y. Zhang and R.-Y. Zhu, ``A Study on Correlations between the Initial Optical and Scintillation Properties and their Radiation Damage for Lead Tungstate Crystals," *IEEE Trans. Nucl. Sci.* NS-54 375--382 (2007).