

Fast Crystals for Forward Calorimeter Upgrade at HL-LHC

Ren-Yuan Zhu California Institute of Technology June 27, 2012

Talk given at CMS Forward Calorimetry Taskforce Meeting, CERN

Forward Calorimeter Upgrade Options

June 27, 2012

Why LSO/LYSO?

LSO/LYSO is a heavy (7.4 g/cm³) crystal with bright (200 times light of PWO) and fast (40 ns) scintillation light. It has been widely used in the medical industry. Its good mechanical characteristics allow it to be used in various forms for different calorimeter designs.

Supported by DOE ADR and US CMS Upgrade Effort the Caltech Crystal Lab has been investigating this material for HEP applications starting 2005. Findings:

- Its radiation hardness is excellent against γ-ray, neutrons and high energy protons (ETH data). There is no recovery, so calibration is relatively easy. See previous talks in the task force meetings.
- The longitudinal non-uniformity issue caused by tapered crystal geometry, self-absorption and cerium segregation can be addressed by roughening one side surface as demonstrated by the work of Caltech crystal lab for the SuperB experiment. See talk in Calor 2012.

□ As a result, LYSO ECAL is base-lined for Mu2e and SuperB.

References: *IEEE Trans. Nucl. Sci.* NS-52 (2005) 3133-3140, *Nucl. Instrum. Meth.* A572 (2007) 218-224, *IEEE Trans. Nucl. Sci.* NS-54 (2007) 1319-1326, *IEEE Trans. Nucl. Sci.* NS-55 (2008) 1759-1766 and *IEEE Trans. Nucl. Sci.* NS-55 (2008) 2425-2341, N32-4 & N32-5 @ NSS09, Orlando, N38-2 @ NSS10, Knoxville, N29-6 @ NSS11, Valencia.

LSO/LYSO Crystal Cost

R.-Y. Zhu, Talk given in Caltech DOE review, June 12, 2012

LSO/LYSO Crystal Cost Breakdown

The Lu_2O_3 price fluctuates up in 2011 and down since 2012, showing market speculation on the rare earth control policy of the Chinese government.

Assuming Lu₂O₃ at \$400/kg and 33% yield the cost is about \$18/cc. Quotations received at \$22-25/cc. For the sampling calorimeter options it seems worthwhile to look into alternative fast crystals not necessary very heavy but with adequate radiation hardness and lower cost.

June 27, 2012

History of Scintillating Crystals

M.J. Weber, J. Lumin. 100 (2002) 35

June 27, 2012

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂	
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77	
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824	
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93	
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21	
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0	
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82	
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No	
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?	
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?	
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?	
d(LY)/dT [⊾] (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?	
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	Mu2e SuperB HL-LHC?	CMS ALICE PANDA	HHCAL?	
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.									

June 27, 2012

Crystals for Homeland Security

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	LaCl ₃ (Ce)	Srl ₂ (Eu)	LaBr ₃ (Ce)	CeBr ₃
Density (g/cm ³)	3.67	4.51	4.51	3.86	4.59	5.29	5.10
Melting Point (°C)	651	621	621	859	538	788	722
Radiation Length (cm)	2.59	1.86	1.86	2.81	1.95	1.88	1.96
Molière Radius (cm)	4.13	3.57	3.57	3.71	3.40	2.85	2.97
Interaction Length (cm)	42.9	39.3	39.3	37.6	37.0	30.4	31.5
Refractive Index ^a	1.85	1.79	1.95	1.9	?	1.9	2.3
Hygroscopicity	Yes	Slight	Slight	Yes	Yes	Yes	Yes
Luminescence ^b (nm) (at peak)	410	550	420	335	435	356	371
Decay Time ^b (ns)	245	1220	690	570 24	1100	20	17
Light Yield ^{b,c} (%)	100	165	88	13 42	221	130	122
d(LY)/dT ♭ (%/ ºC)	-0.2	0.4	0.4	0.1	?	0.2	-0.1

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.

June 27, 2012

THSTITUTE OF

Crystals Measured at Caltech

1.5 X₀ Cubic Samples: Hygroscopic: Sealed Non-hygro: Polished

Full Size Crystals: *BaBar* CsI(Tl): 16 X₀ L3 BGO: 22 X₀ CMS PWO(Y): 25 X₀

June 27, 2012

Excitation, Emission, Transmission

$$T_s = (1-R)^2 + R^2(1-R)^2 + ... = (1-R)/(1+R)$$
, with

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

No Self-absorption: BGO, PWO, BaF₂, NaI(TI) and CsI(TI)

June 27, 2012

Emission Weighted QE

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

L.O. Temperature Coefficient

Temperature Range: 15 - 25°C

Large temperature coefficient: CsI, BGO, BaF₂ and PWO

¹³⁷Cs FWHM Energy Resolution

3% to 80% measured with Hamamatsu R1306 PMT with bi-alkali cathode

2% resolution and proportionality are important for y-ray spectroscopy between 10 keV to 2 MeV

June 27, 2012

Srl₂(Eu) Development

Low Energy Non Proportionality

D: deviation from linearity: 60 keV to 1.3 MeV Good Crystals: LaBr₃, BaF₂, CsI(Na) and BGO

Statistical & Intrinsic Resolutions

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

16

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) LaBr₃, LaCl₃ and LSO/LYSO are blight and fast crystals

Rising Time of Cherenkov & Scintillation

June 27, 2012

IN CHNOLOGIC

Rising Time for 1.5 X₀ Samples

Reported in the time resolution workshop at U. Chicago: Agilent MSO9254A (2.5 GHz) DSO with 0.14 ns rise time Hamamatsu R2059 PMT (2500 V) with rise time 1.3 ns

June 27, 2012

Figure of Merit for Crystals

R.-Y. Zhu, Talk given in Time Resolution Workshop, April, 2011

FoM is calculated as the LY in 1^{st} ns obtained by using light output and decay time data measured for 1.5 X₀ crystal samples.

Crystal Scintillators	Relative LY (%)	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	Total LO (p.e./MeV, XP2254B)	LO in 1ns (p.e./MeV, XP2254B)	LO in 0.1ns (p.e./MeV, XP2254B)	LY in 0.1ns (photons/MeV)
BaF ₂	40.1	91	650	9	0.9	1149	71.0	11.0	136.6
LSO:Ca,Ce	94	100	30			2400	78.7	8.0	110.9
LSO/LYSO:Ce	85	100	40			2180	53.8	5.4	75.3
CeF ₃	7.3	100	30			208	6.8	0.7	8.6
BGO	21	100	300			350	1.2	0.1	2.5
PWO	0.377	80	30	20	10	9.2	0.42	0.04	0.4
LaBr ₃ :Ce	130	100	20			3810	185.8	19.0	229.9
LaCl ₃ :Ce	55	24	570	76	24	1570	49.36	5.03	62.5
Nal:Tl	100	100	245			2604	10.6	1.1	14.5
Csl	4.7	77	30	23	6	131	7.9	0.8	10.6
CsI:TI	165	100	1220			2093	1.7	0.2	4.8
CsI:Na	88	100	690			2274	3.3	0.3	4.5

The best crystal scintillator for time resolution is BaF_2 and LSO/LYSO: Ce/Ca. LaBr₃ is a material with high potential.

Summary of Fast Scintillators

	LSO/LYSO	GSO ¹	YSO ¹	Csl	BaF ₂	CeF ₃	CeBr ₃ 2	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) ³
Density (g/cm ³)	7.40	6.71	4.54	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70#
Radiation Length (cm)	1.14	1.38	3.04	1.86	2.03	1.70	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.87	3.57	3.10	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.3	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54.0	51.6	50.8	45.6	47.3	45.6	-
dE/dX (MeV/cm)	9.55	8.88	6.70	5.56	6.52	8.42	6.65	5.27	6.90	2.02
Emission Peak ^a (nm)	420	430	420	420 310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.80	1.95	1.50	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	35	40	4.2 1.3	42 4.8	8.6	141	15 49	153	35
Decay Time ^a (ns)	40	65	70	30 6	650 0.9	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.7	-0.3	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

- a. Top line: slow component, bottom line: fast component.
- b. At the wavelength of the emission maximum.
- c. Relative light yield normalized to the light yield of LSO
- d. At room temperature (20°C)
- #. Softening point

June 27, 2012

1. N. Tsuchida et al *Nucl. Instrum. Methods Phys. Res. A*, 385 (1997) 290-298 http://www.hitachi-chem.co.jp/english/products/cc/017.html

 W. Drozdowski et al. *IEEE TRANS. NUCL. SCI*, VOL.55, NO.3 (2008) 1391-1396 Chenliang Li et al, *Solid State Commun*, Volume 144, Issues 5–6 (2007),220–224 <u>http://scintillator.lbl.gov/</u>

3. <u>http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx</u> <u>http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html</u>

Comparison of Radiation Hardness

CeF₃ data: E. Auffray et al, *Nucl. Instrum. Methods Phys. Res. A*, 383 (1996) 367-390, CERN-PPE-96-064 CsI data: Zong-ying Wei et al, *Nucl. Instrum. Methods Phys. Res. A*, 326 (1993) 508-512

BaF₂ data : Ren-yuan Zhu, Nucl. Instrum. Methods Phys. Res. A, 340 (1994) 442-457

Summary

- Blight crystals are Eu:Srl₂, Ce:LaBr₃, CeBr₃, Ce:LaCl₃ and LSO/LYSO.
- Fast crystals are available in three groups:
 - A traditional group: BaF₂, pure CsI and CeF₃.
 - A blight and hygroscopic group with patent:
 Ce:LaBr₃, Ce:LaCl₃ and CeBr₃. Mechanically, they are difficult to be used for the sampling option.

- An expansive group: LSO/LYSO/YSO and GSO.

 A R&D program is needed to develop cost effective crystals for CMS forward calorimeter upgrade. While the LSO/LYSO seems the only choice for the total absorption option, the game is wide open for the sampling options.

June 27, 2012