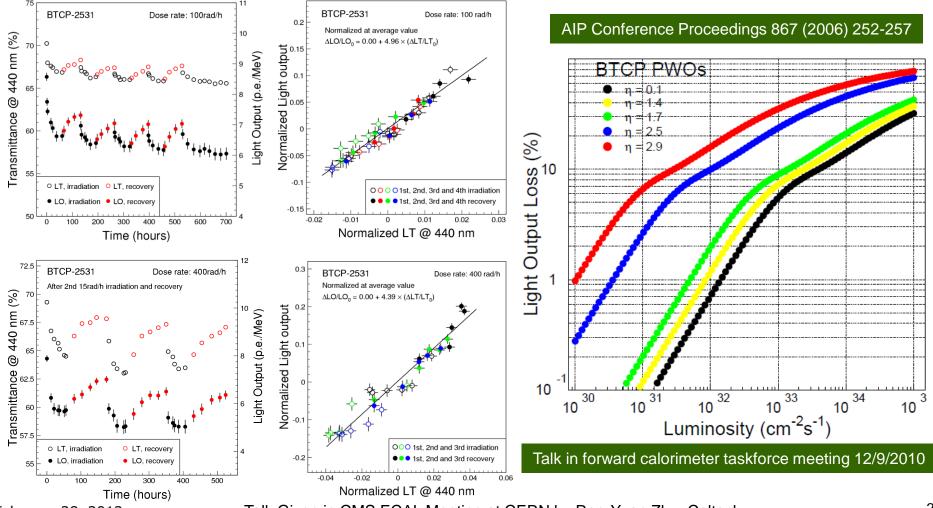


Photonics DP2-447 Laser

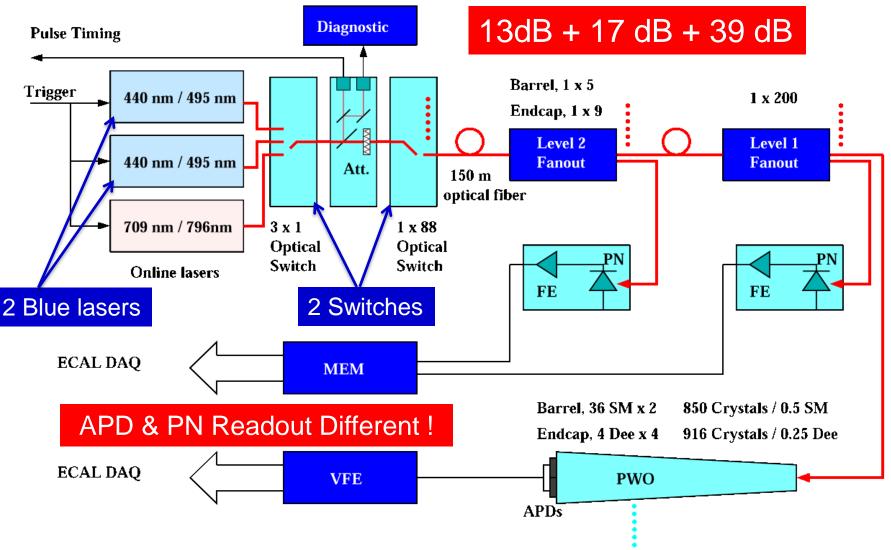
Ren-yuan Zhu Caltech

February 28, 2012


Talk Given in CMS ECAL General Meeting, CERN

PWO Monitoring is Crucial

Significant light output loss in PWO crystals and its variations require precision light monitoring


February 28, 2012

Laser System in 2011

Two lasers to guarantee 100% availability of 440 nm

February 28, 2012

Four Known Issues

- 1. No spares Dicon optical switch.
- 2. Quantronix discontinued lamp pumped Nd:YLF laser in 2005. Laser parts are no longer in production since 2009. Some parts, e.g. lamp power supply and pumping lamp housings etc., are no longer available. Quantronix is merged into Continuum in 2012. The prospect of spare parts is unclear.
- 3. Quantronix Ti:S lasers are custom made for CMS. They are more reliable than the Nd:YLF lasers with about 10% failing rate as compared to the YLF lasers. Long delays are experienced in obtaining replacement parts (LBO etc.) from Quantronix.
- 4. ECAL has not reached its designed resolution. APD/PN steps were observed, some of which are laser intervention and swap related. A stable blue laser with no frequent interventions would help.

Laser Upgrade

The issue of laser upgrade was raised to the ECAL management in 2008 with a proposal submitted in March, 2009, and presented in 2010 December ECAL Meeting.

- New optical switches
- New solid state pump laser for Ti:Sapphire laser to replace Kr-lamp
- New orange laser for the EE to replace the LED system
- Spares for IR/orange lasers in EB and EE

Laser Committee Members: Brad Cox, Marc Dejardin, Roger Russack, Wolfram Zeuner, Ren-Yuan Zhu

Task – review modifications/upgrades of the laser system Benefits, risks, integration, time schedule, costs → Recommendations

February 28, 2012

Talk Given in CMS ECAL Meeting at CERN by Ren-Yuan Zhu, Caltech

Therefore enough spares must be procured now Quantronix lasers

The system must be kept running in today's configuration until LS1

• A second large optical switch must be procured a.s.a.p.

(this might be as long as until spring 2013 !)

 In view of the long term operation, it is not sufficient to replace only the pumping laser of the blue laser system.

Laser Committee Recommendations

W. Zeuner, 6/28/2011, ECAL Meeting

 The entire blue laser system must be replaced. It can be expected that the new system will show much less jumps in the APD/PN ratio

A market survey should be performed before purchasing One laser should be procured in FY12 to perform tests of long term stability The general parameters (wavelength, pulse length, shape and stability, jitter.... can be used from the current system

The energy of the current laser is an advantage, but not absolutely mandatory depending on the chosen technology it might come as by product of the required stability.

There is no need for yet another frequency laser (green)

Procure a new blue laser in FY12

No retirement of

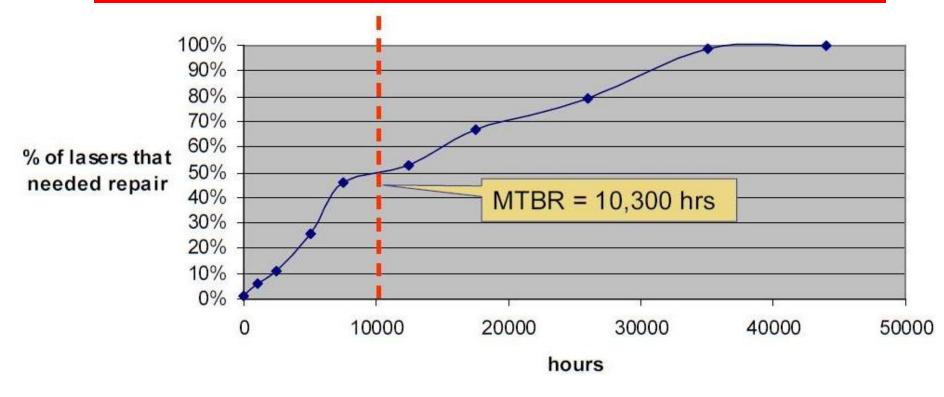
ECAL Decision (9/29/2011)

- W. Zeuner: laser committee final recommendations:
 - https://indico.cern.ch/conferenceDisplay.py?confld=155389
- 1. Phase-in a new blue laser, in parallel to the current one
- 2. Procure a spare 1 x 100 switch
- 3. Don't move the system to the surface in 2011-2012 Winter Stop
- Initial laser procurement and commissioning schedule (28 weeks)
 - At CERN: preparation of infrastructure, contingency plan for operation in B field (ECAL FTC + Tech Coord.)
 - At Caltech (Ren-yuan Zhu: a schedule of 28 weeks)
 - Order Placed: Day 0;
 - Laser Construction and Delivery to Caltech: 16 weeks + 1 week;
 - Laser acceptance tests and control software development: 8 weeks;
 - Laser delivery to CERN: 1 week;
 - Laser installation at P5 make it operational: 2 weeks
 - \rightarrow Dave Barney agreed to oversee this activity

February 28, 2012Talk Given in CMS ECAL Meeting at CERN by Ren-Yuan Zhu, Caltech

Revised Specifications for RFQ

- \rightarrow Pulse FWHM: < 30 ns to match ECAL readout
- \rightarrow Pulse jitter: < 3 ns for synchronization with LHC
- → Pulse rate: 0-100 Hz, scan of full ECAL in 20min
- → Pulse intensity instability: < 3%</p>
- → Pulse energy: 1 mJ/pulse at 440 nm, equivalent to 1.3 TeV in dynamic range
- → Pulse delay from external trigger: < 90 µs, for monitoring trigger to stay in one LHC beam cycle


The laser will be integrated into the existing monitoring system, so a compact system is highly desired. The laser will be run in the 24/7 mode, MTBR (mean time between repairs) is required to be longer than 3 months.

Expected DPSS Laser Reliability

Unlike lamp pumped lasers, this kind of lasers does not need lamp changing and retuning.

MTBF is at 10,000 h for Diode pumped solid state lasers

February 28, 2012

12 Manufactures Contacted

- 1. Photonics Industries International, Inc, 390 Central Ave., Bohemia, NY 11716
- 2. Continuum Sub. of GSI Group, 3150 Central Expy., Santa Clara, CA 95051
- 3. Quantronix, 41 Research Way, East Setauket, New York 11733
- 4. CrystaLaser LC, 4750 Longley Lane, Reno, NV 89502
- 5. Spectra-Physics Lasers, A Newport Corp. Brand, 3635 Peterson Way, Santa Clara, CA 95054
- 6. New Focus, A Newport Corp. Brand, 3635 Peterson Way, Santa Clara, CA 95054
- 7. JDSU, 430 N McCarthy Blvd., Milpitas, CA 95035
- 8. Coherent Inc., 5100 Patrick Henry Dr., Santa Clara, CA 95054
- 9. Teem Photonics USA, Sub. of Teem Photonics SA, 3594 Nyland Way, Ste. TP1, Lafayette, CO 80026
- 10. IPG Photonics Corporation, 50 Old Webster Rd., Oxford, MA 01540
- 11. Laserglow Technologies, 216-5 Adrian Ave., Toronto, ON M6N 5G4, Canada
- 12. Quantel USA, 601 Haggerty Lane, PO Box 8100, Bozeman, MT 59715-2001

Liyuan Zhang and Ren-Yuan Zhu visited Photonics and Quantronix on 10/19/2011 and 10/20/2011

Offers and Final Decision

- Quantronix (manufacturer of the existing ECAL lasers)
 - Diode pumped YLF + Ti:Sapphire laser @ 440nm
 - Met specifications
 - Long delivery time (~6 months)
- Two options from Photonics
 - Diode pumped YLF + Ti:Sapphire laser @ 440nm
 - Diode pumped YVO₄ laser @ 447nm (DP2-447)
 - Met specifications & good delivery time (16 weeks)
- DP2-447 selected on 11/5/2011
 - http://cern.ch/go/W9VD

Photonics DP2-447 Quotation

Included

Photonics Industries

International. Inc. 390 Central Ave., Bohemia, NY 11716, USA Tel: 631-218-2240 Fax: 631-218-2275

Quotation Num	ber: Q11-1107AI 2	QUOTATION
Date:	11/7/11	
Valid until:	12/7/11	
Payment:	25/50/25 (Pending credit approval)	
Freight:	F.O.B Bohemia, NY	
Delivery:	Standard delivery time frame is 12-14 w	veeks.

California Institute of Technology	From:	Photonics Industries
1200 E California Blvd,		390 Central Avenue
Pasadena CA 91125		Bohemia, NY 11716
	Tel:	631-218-2240
	Fax:	631-218-2275
Liyuan Zhang	Attn:	Andrew Iadevaia
	1200 E California Blvd, Pasadena CA 91125	1200 E California Blvd, Pasadena CA 91125 Tel: Fax:

Description		Unit Price	Qty	Total
DP2-447				
Diode Pumped laser				
		\$165,000.00	1	\$165,000.00
Wavelength	447nm			
Energy per Pulse	1mJ			
Pulse Width (FWHM)	15 ns (nominal)			
Stability of laser pulse width	under random external trigger up			
to 100 Hz: < 5% rms;				
Spatial Mode	TEMoo			
Polarization	Horizontal			
Beam Divergence	<2 mrad			
Pointing Stability:	<50 µrad			
Pulse to Pulse Stability	<3%rms			
Pulse Jitter	<3ns rms			
Pulse delay from external trigger	~90us			
Repetition Rate	Single Shot to 200 Hz			
Laser Dimensions 7.5" (W	7) x 22" (L) x 3.75" (H)			
Customer will perform a mea	asurement at our facility to verify	Included	1	Included
the specification for stability	of the laser pulse width. If the			
above quoted specification for	or pulse width stability can not be			
met, the customer will have t no penalty.	the option to cancel the order with			
Customized Option for two	separate external triggers	\$5,000.00	1	\$5,000.00

Order placed verbally on 11/11/11 Delivery promised on 1/31/2012

Photonics Industries						
Supply Unit input 110VAC or 220VAC, 50-60Hz, single phase switch external input by TTL via BNC and External	Included	1	In			
ut, RS232 communication. as:13.5"(L)x19"(W)x5.25"(H)						
nountable closed loop water to air chiller	Included	1	In			
			-			

DP Power Supply Unit Electrical input 110VAC or 220VAC, 50-60Hz, single phase power. Q-switch external input by TTL via BNC and External Gating Input, RS232 communication.	Included	1	Included
Dimensions:13.5"(L)x19"(W)x5.25"(H) Chiller	Included	1	Included
19" rack mountable closed loop water to air chiller	mended	1	mended
System Software DP Control software provides basic system operating controls in a convenient graphical user interface configuration.	Included	1	Included
Warranty Standard Photonics Industries one-year parts and labor warranty. Warranty repairs are to be performed at Photonics Industries facilities or at customer's site. Travel and living expenses to be paid by customer.	Included	1	Included

Standard warranty and Terms and Conditions attached

Authorized Signature

DD D......

Photonics Industries P: 631-218-2240 F: 631-218-2275

There were concerns about the pulse width stability. A clause was added.

There were concerns about the pulse delay. Two triggers were added.

User References

Photonics Industries claims that most of its diode pumped lasers are used in military and private industry.

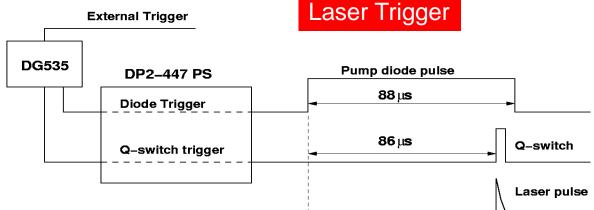
Zebra Imaging Inc.

Michael A. Klug commented two 447 nm lasers purchased from Photonics Industries (PI) about 1.5 years ago. The lasers are run in 24/7 mode at 120 Hz with pulse energy of about 1 mJ and pulse width of about15 ns. The required pulse energy instability is about 3% rms and jitter < 3ns rms. There is no requirement for the delay from external trigger. While do not have laser diagnostic data registered, they believe the long term stability is good by looking at an imaging threshold. These two 447 nm lasers have been run for about 7,000 hours and no significant degradation in output is noticed. Zebra Imaging started using PI lasers more than 5 years ago. They have about 15 PI lasers, most of them are green (532 nm). The average pump diode lifetime is about 15,000 hrs. They are satisfied by the PI' lasers.

Oakridge National Lab

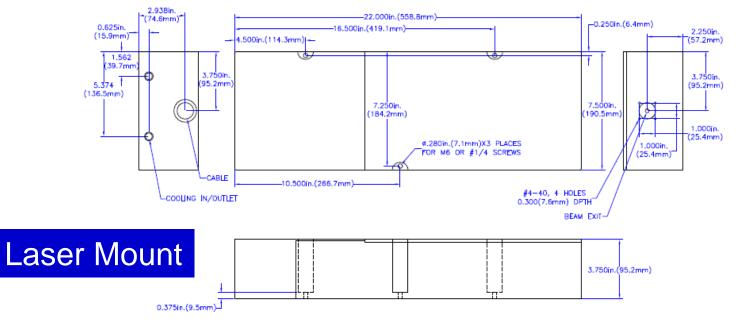
Dr. Yuan LIU commented on a diode pumped Nd:YLF pumped Ti:Sapphire laser system of Photonics Industries procured about one and half year ago. The laser system is run at 10 KHz in 24/7 mode for several weeks each run. While the Ti:Sapphire laser has no problem, the Nd:YLF had a problem caused by condensed water and it was fixed by Photonics Industries. She recommended Photonics Industries.

University of Washington (Prof. Thomas SPIRO group)

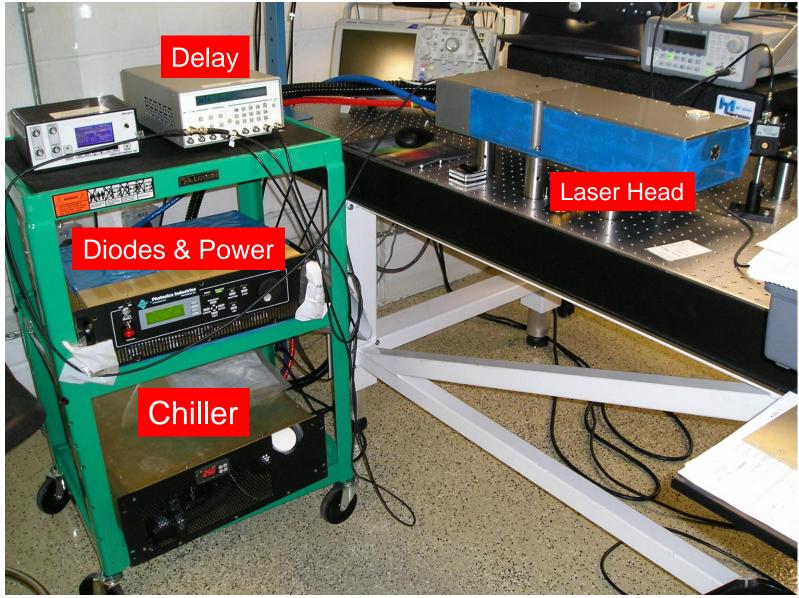

Dr. Balakrishnan commented on their Nd:YLF pumped OPO system of Photonics Industries purchased about 5 yrs ago. They are basically satisfied with the laser. The laser is run at 1 KHz, but NOT in 24/7 mode. The original diode module is still in good shape with accumulated time of over 3,500 hrs. There were some small issues like power dropping, chiller not working properly etc. The service is not as good as expected. While hoping Photonics will improve its service, they recommended the Photonics Industries.

Photonics DP2-447 Laser

- A Simple Laser:
 - 1 laser system (c.f. 2)
 - Compact laser head: 7.5" x 22" x 3.75"
 - Low power: no external chilled water needed.
- Designed to be rigid and reliable: no user alignment needed.
- David Bailleux, Guy Chevenier and Liyuan Zhang visited Photonics on 1/23 and 1/24 for laser M&O training.


February 28, 2012 Talk Given in CM

DP2-447 at Photonics (1/24/2012)



February 28, 2012

DP2-447 at Photonics (1/24/2012)

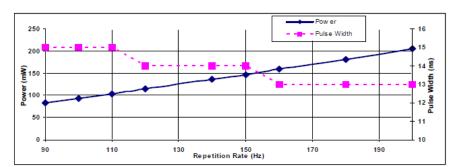
February 28, 2012

Clause of DP2-447 Pulse Width

PHOTONICS INDUSTRIES INTERNATIONAL, INC. 390 Central Avenue, Bohemia, NY 11716

Tel.: (631) 218-2240 Fax: (631) 2182275

Test Data and Operational Parameters


Date: April 29, 2011 Model Num

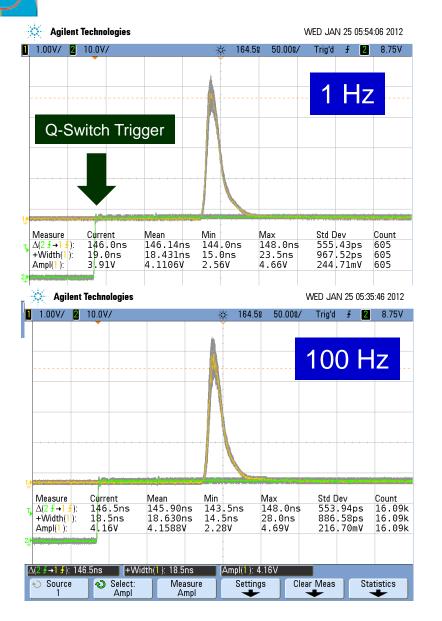
Model Number: DP2-447

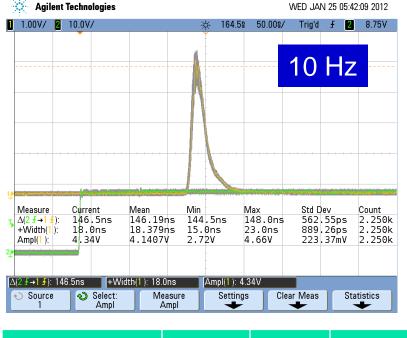
Operational Parameters					
Parameter	Set Point	Actual			
Operating Current (I _{op}) (A)	30.5	0.00			
Chiller Temperature (°C)	24.5	N/A			
SHG Temperature (°C)	50.0	50.0			
THG Temperature (°C)	50.5	50.7			
	$\overline{\}$				
		Nation Statistics Particular States			

Serial Number: 10-115

Polarization Direction	Polarization Ratio	Operational P.R.F. Range	Wavelength
Vertical	>500:1	0-200Hz	447nm

A report from Photonics shows pulse width reduced from 15 ns to 13 ns when the trigger rate is increased from 90 Hz to 200 Hz.


Photonics explanation: a simmer function which stabilizes the thermal load was not activated.


A test on 1/24/2012 at Photonics show that pulse width varies from 18.4 ns to 18.6 ns when the trigger rate is increased from 1Hz to 100 Hz, indicating that the simmer function indeed stabilizes thermal load and thus the pulse width.

February 28, 2012

Pulse Width at Photonics (1/24/2012)

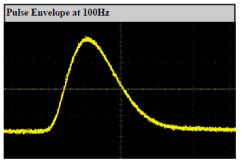
Trigger (Hz)	1	10	100
Width (ns)	18.4	18.4	18.6

Based on this measurement the clause in the Photonics quotation was waived. The laser shipped on 2/3/2012.

February 28, 2012

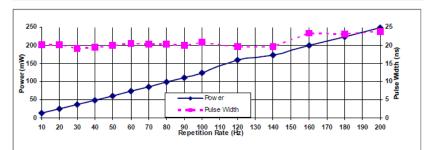
Photonics Report (2/3/2012)

> 1 mJ; Stability: Intensity 0.4%, width < 5%, Jitter < 2 ns


390 Central Avenue, Bohemia, NY 11716 Tel.: (631) 218-2240 Fax: (631) 2182275

Test Data and Operational Parameters

Date: February 3rd, 2012 Model Number: DP20-447


Serial Number: 11-381

Operational Parameters			Power / P	
Parameter	Actual	Set Point	at Consta	$\mathbf{nt} \mathbf{I}_{op} = 0$
Operating Current (I _{op)} (A)	N/A	65.00	P.R.F. (Hz)	Average Po (mW)
Chiller Temperature (°C)	25.0	25.0	10	12.6
SHG Temperature (°C)	49.9	50.1	20	24.8
THG Temperature (°C)	51.1	51.1	30	36.6
•		1	40	40.0

at Constant I _{op} = 65.00A					
P.R.F. (Hz)	Average Power (mW)	Pulse Width (ns)			
10	12.6	20.1			
20	24.8	20.2			
30	36.6	19.2			
40	49.0	19.5			
50	61.1	20.0			
60	73.4	20.4			
70	85.7	20.3			
80	98.2	20.3			
90	110.7	20.0			
100	123.5	20.8			
120	159.7	19.6			
140	173.4	19.7			
160	199.2	23.3			
180	223.2	23.2			
200	248.6	23.8			

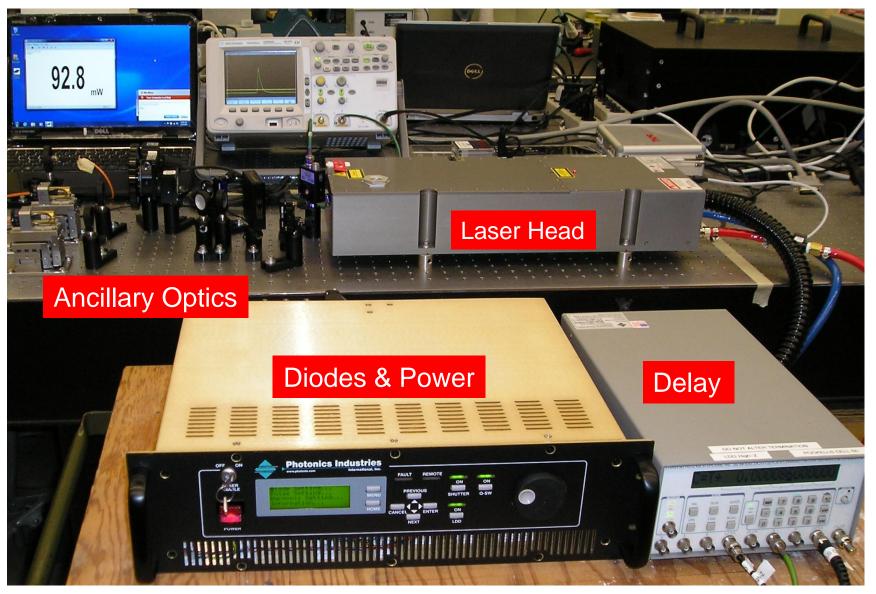
Tel. (631) 218-2240 Fax: (631) 2182275

Beam Characteristics and Stability

Date: February 3rd, 2012 Mod

Model Number: DP20-447 Seria

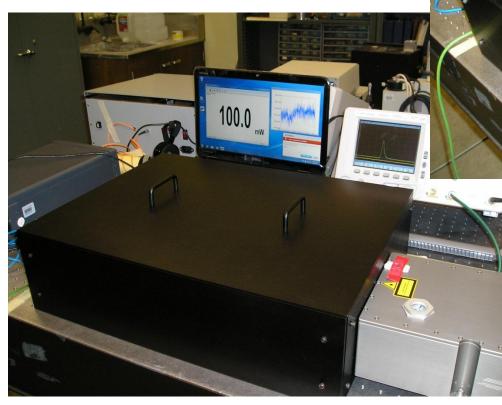
Serial Number: 11-381


	Pulse Characteristics					
PRF (Hz)	Pulse Width (ns)	Pulse Width Stability (%)	Pulse Jitter (ns)	Pulse Intensity (mJ)	Pulse Intensity Stabilit (%)	
10	20.1	3.0	2.0	1.25	0.4	
20	20.2	3.0	2.0	2.20	0.4	
30	19.2	4.1	1.5	1.23	0.4	
40	19.5	4.1	1.5	1.24	0.4	
50	20.0	4.0	1.5	1.25	0.4	
60	20.4	3.9	1.5	1.24	0.4	
70	20.3	4.4	1.5	1.24	0.4	
80	20.3	4.2	1.5	1.24	0.4	
90	20.0	4.3	1.5	1.25	0.4	
100	20.8	4.3	1.5	1.25	0.4	
120	19.6	3.6	1.5	1.25	0.4	
140	19.7	3.7	1.5	1.24	0.4	
160	23.3	3.0	1.5	1.24	0.4	
180	23.2	2.5	1.5	1.24	0.4	
200	23.8	2.5	1.5	1.24	0.4	

Diode current pulse width: 88 µs Peak pulse current: 65 A Pockel cell delay: 86 µs, on: 2 µs.

DP2-447 at Caltech (2/17/2012)

February 28, 2012



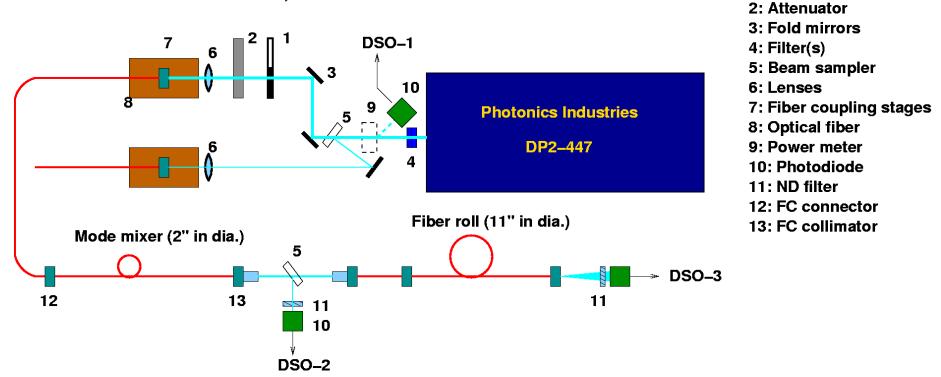
DP2-447 at Caltech (2/23/12)

99.6

Ancillary Optics

February 28, 2012

Set-Up for DP2-447 Evaluation

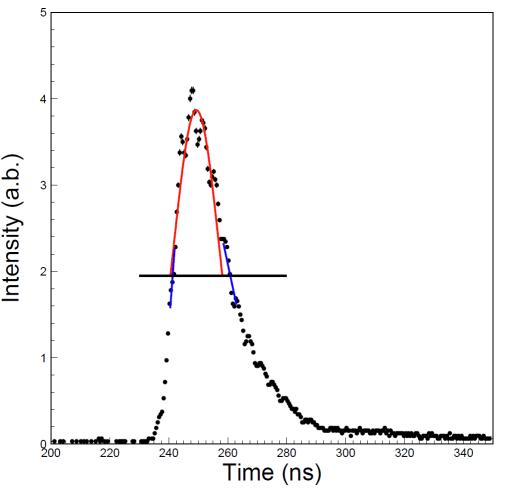


1: Beam shutter

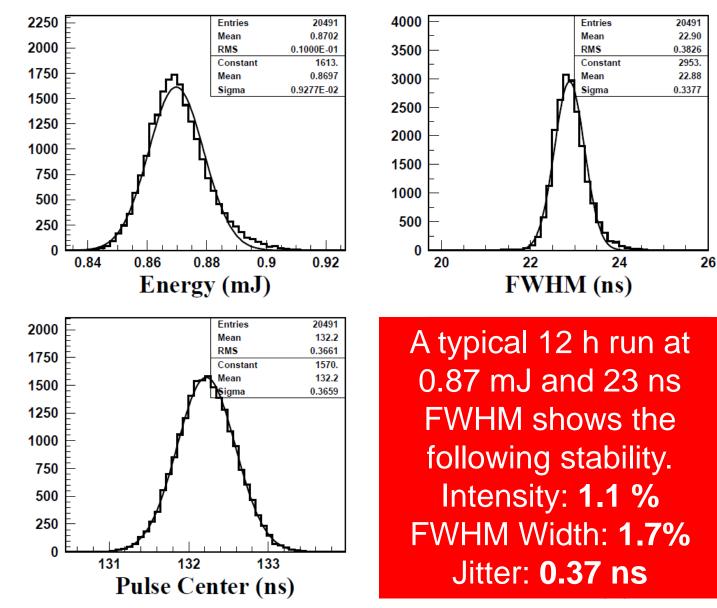
DSO-1 was used to evaluate DP2-447 Performance

DSO: Agilent 6052A, 500 MHz, 2 Gsa/s

Photodiode: Thorlabs DET10A, risetime < 1 ns

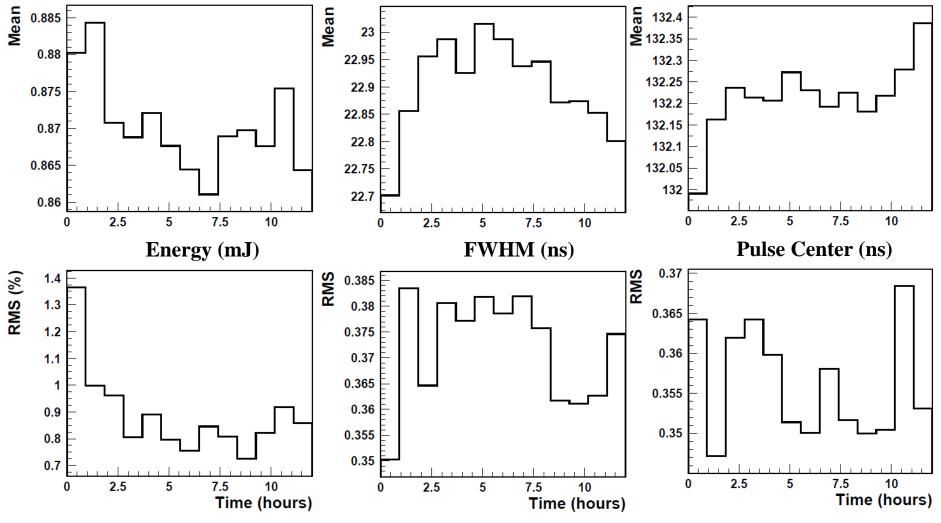

DSO-2 and 3 were used to measure fiber dispersion

Pulse Shape Reconstruction


500 MHz, 2 GS/s DSO

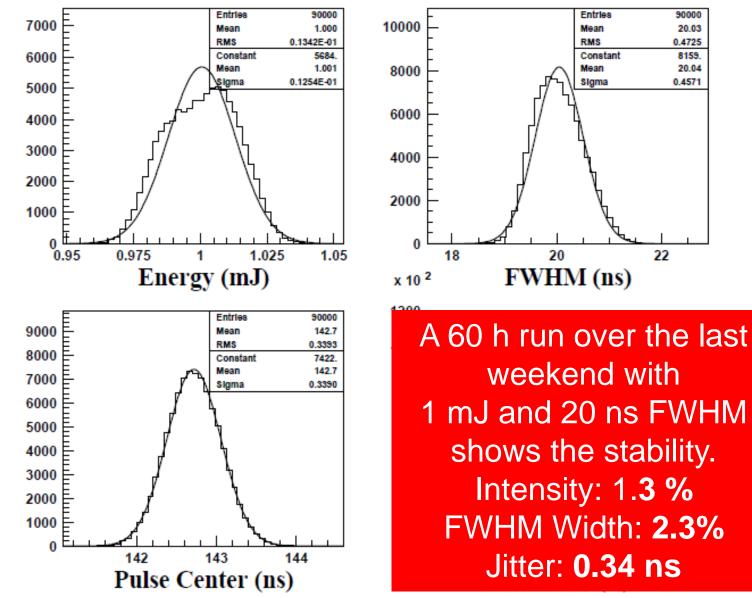
- Find maximum pulse V_m
- Find time at V_m/2: t₁ and t₂
- Gaussian fit in (t₁, t₂)
- Pulse energy: Σy_i in (-4σ, 8σ)
- Pulse center: Σt_iy_i/Σy_i in (-4σ, 8σ)
- Pulse width: 5 points (2 before and 2 after) linear fits to find t_{1f} and t_{2f} at $V_m/2$. FWHM = $t_{2f} - t_{1f}$

Over Night Data at Caltech (2/23/2012)


February 28, 2012

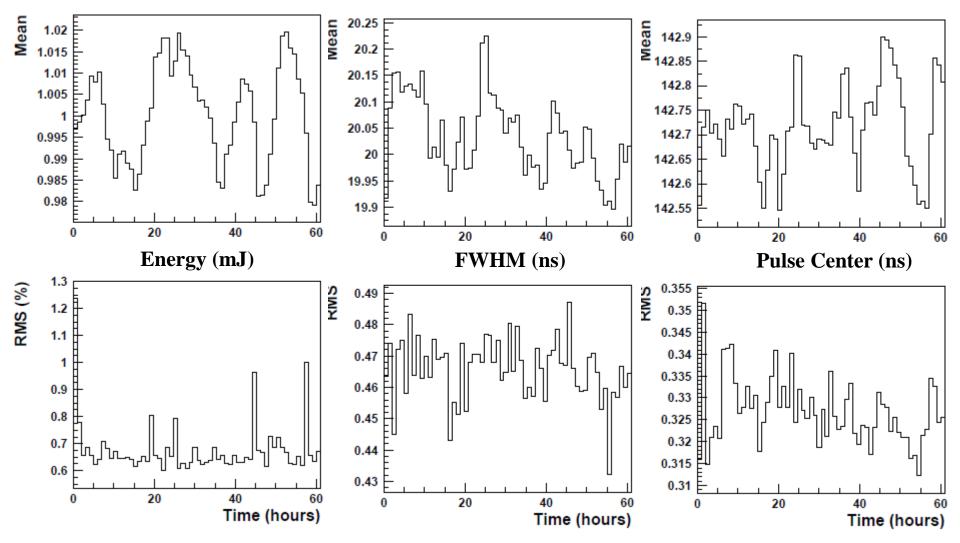
History of 12 hour Data

Up to 2% pulse intensity drifting noticed: temperature?



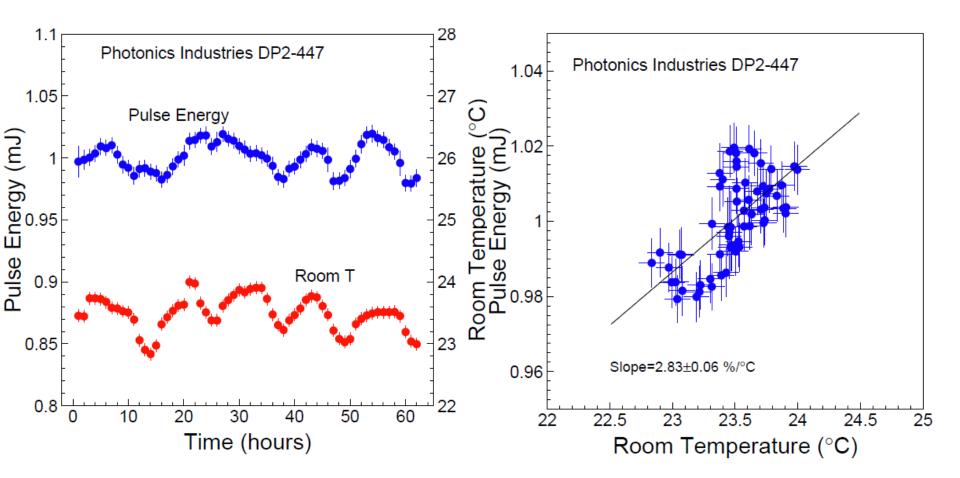
February 28, 2012

Over Weekend Data (2/26/2012)


February 28, 2012

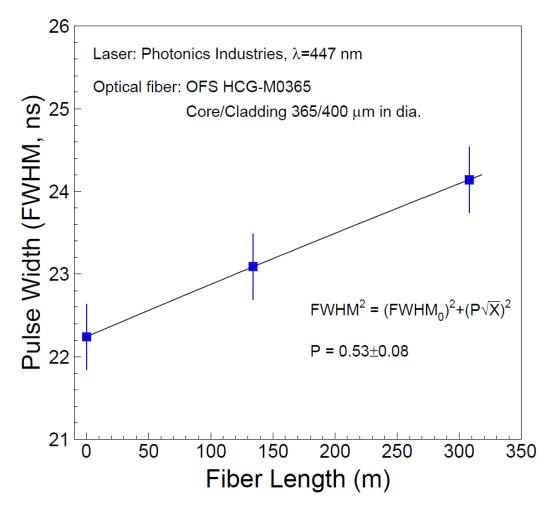
History of 60 hour Data

More than 3% draft in pulse intensity observed


February 28, 2012

Pulse Energy versus Room Temperature

Room temperature needs to be stabilized to 0.3°C to maintain pulse energy stability at a level of 1%



Pulse Width Broadening in Fiber

Wavelength	HCG-M0365T Fiber	Input Pulsewidth	Output Pulsewidth	Broadening Rate	Broadening Rate
(nm)	(m)	(ns)	(ns)	(ns/100 M)	(ns/(100 M) ^{0.5})
447	134	22.25	23.09	4.61	5.33
447	308	22.23	24.14	3.06	5.36

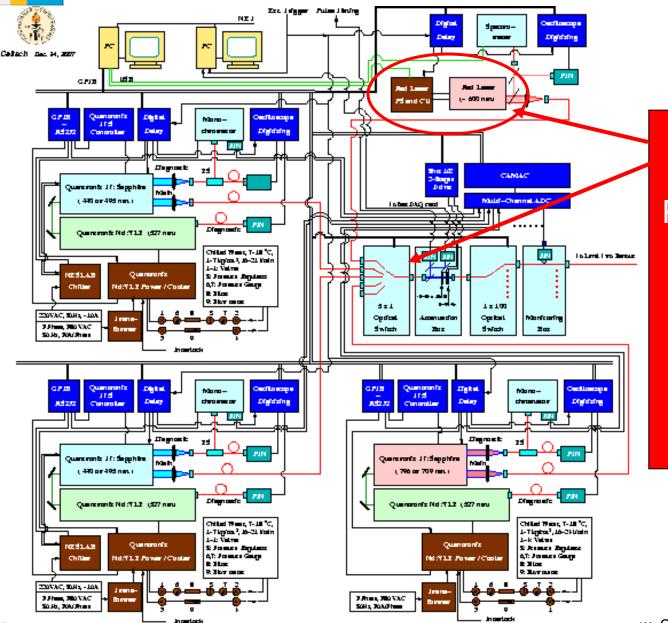
Laser pulse width broadening (time dispersion) was observed, which seems following square root of fiber length.

The dispersion effect would be more serious for narrow laser pulses.

Will measure this effect again with narrow laser pulses and at different wavelengths.

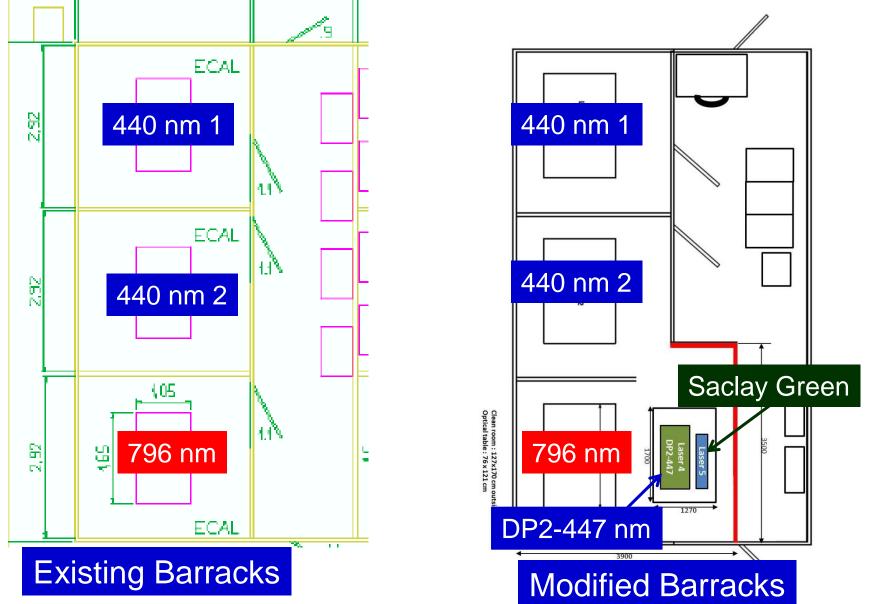
February 28, 2012

DP2-447 Commission at P5


- Location for the laser
 - New area located in the existing barracks
- Operation in the magnetic field (no info from manufacturer)
 - Preparations for magnetic shielding
- Integration with existing lasers
 - Switches, laser supervisor, MATACQ etc.
- Modifications to timing/triggering
 - New laser may use a delay of ~90 µsec (>1 bx)

February 28, 2012

Integration to the Existing System

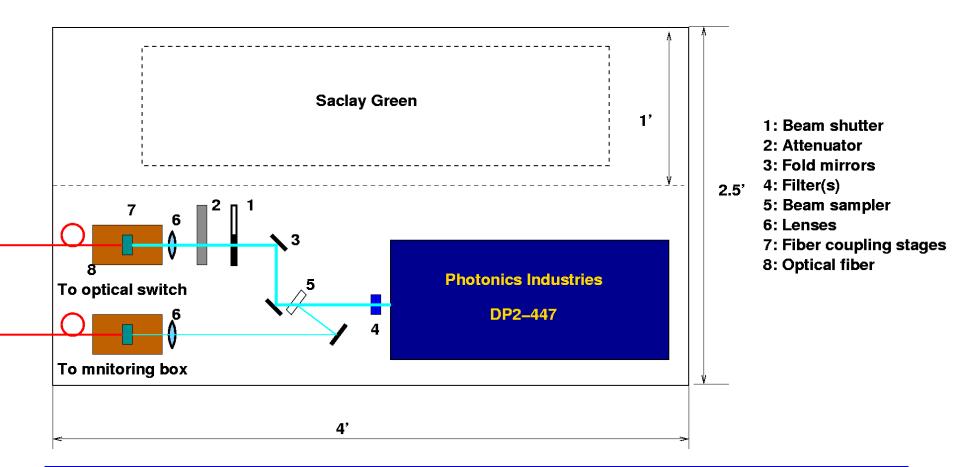

Two additional lasers: Photonics DP2-447 at 447 nm and Saclay green will be added using the existing 5 x 1 switch

Taik Given in Civis ECAL meeting at CERN by Ken-Yuan Zhu, Caltech

Laser Barracks & Modification

February 28, 2012

Laser Barracks (2/27/2012)



February 28, 2012

Both DP2-447 and the Saclay Green lasers will be installed on a 2.5' x 4' optical table in the existing laser barracks

February 28, 2012

Schedule

- Order placed 11/11/11, laser at Caltech: 2/6 to 3/8/12;
- Packing: 3/6 and 3/7; Shipping: 3/8/2012;
- Commissioning at P5: 3/19 to 3/30/2012;
- Run: 3/31 to 4/30/2012...

#	Info	Title	#	Expected Start	Expected End	% Compl	Q2 /	2011	Q3 / 2011		Q4 / 2011		Q1 / 2012			Q2 / 2012			
			Predecessors			ete	05	06	07	80	09	10	11	12	01	02	03	04	05
0	900	d CMS ECAL DP2-447 Laser		11/1/11	4/30/12	2%	CMS	ECAL DP2-	447 Laser	Procurement	& Commis:	sioning	-						
1		Procurement		11/1/11	2/8/12	3%					Procu	irement	-	_		-			
2		Laser		11/23/11	1/31/12	0%							Laser	2.05 months		h			
5		Ancillaries		11/1/11	1/30/12	4%					An	cillaries	2.8 mon	ths ?		H			
81		Laser barrack		11/30/11	2/8/12	0%						Lase	er barrack	2.1 months	\$?				
101	9	1x100 optical switch		11/30/11	12/5/11	0%					13	x100 optic	al switch	4					
106		Commissioning @ Caltech	2;5	2/1/12	3/6/12	0%							Con	nmissioning @	Caltech	1.2m?			
110		Transport to P5	106	3/7/12	3/19/12	0%									Trans	port to P5	♦ 1.8v		
114		Preparation of P5		11/1/11	2/15/12	0%					Preparatio	on of PS	3.4 mon	ths ?					
124		Install & Commission at P5	113; 114	3/20/12	4/2/12	0%								I	Install & Con	nmission at	P5 ↓ 2w?	רי	
130		Operation	124	4/3/12	4/30/12	0%										0	peration	1 month 2	

Because of the simple laser, schedule is reduced to 20 weeks

February 28, 2012

Summary

Light output variations in PWO crystals present a challenge for precision crystal calorimeter at the LHC. A DP2-447 blue laser is expected to provide a reliable light source.

Tests at Caltech show that the DP2-447 laser meets original specifications in pulse intensity and stability. The system will be commissioned at P5 in March and start operation in April. The construction project is on schedule.

Laser pulse width broadening (time dispersion) was observed for blue laser pulses from DP2-447. It seems following square root of the fiber length. The net effect depends on the laser pulse width, and is more serious for narrow pulses.

Future Plan

Before 3/8/2012: put system together, measure correlations, optimize run parameters, such as delay etc. and packing.

3/8/2012: Ship DP2-447 from Caltech to CERN.

3/19 – 3/30/2012: Commission DP2-447 at P5.

2012: Gain experience for DP2-447 laser M&O. Keep three Quantronix lasers operational.

Long shutdown: M&O for one Photonics DP2-447 laser. Need to make decisions on (1) Quantronix lasers, (2) 2nd blue laser and (3) additional lasers for the secondary wavelength, such as IR and orange.

After long shutdown: M&O for two blues lasers, plus addition if any.

DP2-447 Warranty & Spare Parts

Field Replaceable Spare Parts and Warranty Options for DP2-447 Laser System

Part #	description	Price	Quantity	Lifetime	
	Diodes		2	guaranteed for	
5027842		\$6,600.00		5,000hours	
8227500	Output Window	\$550.00	1	3-5 Yrs	
2026715	Laser Diode Driver	\$3,750.00	1	5 Yrs +	
2026244,	Power Supplies	\$1,000.00			
2026257,					
2027899, 2027074			4	5 Yrs +	
8027164	Dawn Board	\$300.00	1	3-5 Yrs	

Extended Warranty Options for DP2-447 Laser System:

Service Plan I

Service Plan I is available to cover Photonics Industries laser systems. This plan provides coverage for a service engineer or a laser system to allow for rapid replacement of a laser requiring service. Under this plan, Photonics Industries will either send an engineer to the customer site to repair the laser or if it is deemed that the laser can not be repaired in the field will send a replacement laser to the customer within 24 hours of notification. If a replacement laser is sent then the laser to be serviced will be returned to Photonics Industries or a Photonics Industries designated service center at the discretion of Photonics Industries. The laser will be serviced to conform and meet original specifications. The customer may choose to keep the replacement laser or have the original laser returned to them.

This agreement may be purchased at any time provided the system is still under original warrantee or currently covered under Service Plan I

The advantage of this plan is that the customer does not have to purchase and maintain a spare laser. For this service, a yearly fee of 30% of the laser price will be charged.

Service Plan II

Service Plan II is an extension of the standard warrantee. Under this plan a laser that requires service is to be returned to Photonics Industries or a Photonics Industries designated service center at the discretion of Photonics Industries. The laser will be serviced and returned to the customer. During the time the laser is being serviced, a laser will be lent to the customer, if available. Upon return of the serviced laser, the customer must return the loaner laser to Photonics Industries within one (1) week. If the laser has to be returned to Photonics Industries, the customer will be responsible for all the shipping charges, taxes and duties related to shipping the lasers Photonics Industries.

Photonics Industries

390 Central Ave., Bohemia, NY 11716, USA International, Inc. Tel: 631-218-2240 Fax: 631-218-2275 www.hebonix.com info@hebonix.com

agreement may be purchased at any time provided the system is under original warrantee or currently covered under Service Plan II.

For this service Photonics will charge a yearly fee of 20% of the laser price will be charged.

Service Plan III

This

Service Plan III is available to cover Photonics Industries laser systems. Lasers in need of repair should be returned to Photonics Industries for evaluation. Upon evaluation Photonics Industries will give the customer a detailed quotation for the required repair. If the customer accepts this quotation, Photonics will make the repairs and return the laser to the customer. The customer will be responsible for all the repair charges, shipping charges, taxes and duties related to shipping the lasers to and from Photonics Industries.

Plan 1: Photonics sends a replacement 30% of laser cost, or \$51k/year.

Plan 2: Photonics sends a loaner if available, which is required to be sent back within a week after service. 20% of laser cost/year, or \$34k/year.

Plan 3: Laser returned to Photonics Pay service fee each time. Service time needed is 6 to 8 weeks.

User self-service is not recommended.

M&S Cost for DP2-447 Maintenance

Initial spare parts procurement: \$40k; Yearly cost: \$20k

ltem	Description	Part#	Unit Price	Quantity	Price2	Est. Lifetime (Year)	Cost/Year
1	Pump Diodes	5027842	\$6,600	2	\$13,200	1	\$13,200
2	Laser Diode Driver	2026715	\$3,750	1	\$3,750	5	\$750
3	Output Window	1028134	\$1,500	1	\$1,500	3	\$500
4	Power Supply Module	2026244	\$1,000	1	\$1,000	5	\$200
5	Power Supply Module	2026257	\$1,000	1	\$1,000	5	\$200
6	Power Supply Module	2027899	\$1,000	1	\$1,000	5	\$200
7	Power Supply Module	2027074	\$1,000	1	\$1,000	5	\$200
8	Dawn Board	8027164	\$300	1	\$300	3	\$100
9	Laser Crystal	5027658	\$4,000	1	\$4,000	3	\$1,333
10	SHG Crystal	5000051	\$3,000	1	\$3,000	3	\$1,000
11	THG Crystal	5000056	\$3,500	1	\$3,500	3	\$1,167
12	Q-switch		\$3,500	1	\$3,500	5	\$700
13	Lens	5110387	\$500	1	\$500	5	\$100
14	Lens	5110389	\$500	1	\$500	5	\$100
15	Mirror	5127497	\$495	1	\$495	5	\$99
16	Mirror	5127577	\$495	1	\$495	5	\$99
17	Mirror	5110907	\$495	1	\$495	5	\$99
18	Waveplate	5211009	\$500	1	\$500	5	\$100
19	Waveplate	5327000	\$500	1	\$500	5	\$100
				Total	\$40,235		\$20,247

Additional cost for manpower, travel and M&S for ancillary equipment

February 28, 2012