Result of Uniformization by Roughening 25 LYSO Crystals

Ren-yuan Zhu Caltech

December 13, 2011

Introduction

- Following CMS experience the light response uniformity is required to be $|\delta| < 3\%$.
- Uniformization with 15 mm wide black paint at the small end of the smallest side surface is not sufficient.
- A ray-tracing simulation shows that |δ| < 3% may be achieved with appropriate roughening for one of the side surfaces.
- Following 1st test at SIC for sample SIC-L3 all other 24 LYSO crystals were roughened at Mindrum Precision, Inc., California.

Light Response Non-Uniformity: δ

CMS Specification for Uniformity

 $|\delta| < 3\% \& 4\%$ for 18 X₀ (SuperB) & 25X₀ (CMS)

Twenty Five Test Beam Crystals

Crystals are procured from three vendors: Saint-Gobain, SIPAT and SIC, and are characterized and uniformized in Caltech Crystal Laboratory.

Dimensions and Surface Definition

Summary of SuperB Test Beam Crystals

With 15 mm wide black band painted at the small end of the smallest side surface

Caltech-ID	Vendor-ID	Test-Beam-Position	Туре	LT @ 420 nm (%)	LY, ER & Uniformity by PMT* (% of candel 1), (FWHM, %), $(\delta,\%)$	LY, ER & Uniformity by APD (As)* (p.e./MeV), (σ, %), (δ, %) (rms, %)	LY, ER & Uniformity by APD (Uni)* (p.e./MeV), (σ,%), (δ,%) (rms,%)	LO Loss %
SIPAT-11	02_08_08	ring 8-3	8	82.3	47.6, 10.7, 5.3	1420, 15.5, 12.9, 6.5	1190, 21.4, 7.2, 3.8	16.2
SIPAT-12	02_08_08	ring 8-1	8	82.2	46.5, 10.4, 3.9	1440, 15.1, 14.2, 7.1	1210, 20.7, 10.0, 5.1	15.9
SIPAT-13		ring 6-1	6	82.6	52.5, 11.5, 2.7	1440, 14.9, 6.8, 3.6	1220, 20.4, 3.4, 2.0	15.3
SIPAT-14		ring 6-2	6	82.7	53.7, 10.9, 3.2	1500, 14.9, 14.4, 7.4	1200, 20.4, 9.0, 4.6	20.0
SIPAT-15		ring 6-4	6	80.7	52.8, 10.5, 3.4	1580, 13.7, 11.9, 6.0	1310, 19.1, 6.1, 3.4	17.1
SIPAT-16		ring 6-5	6	81.1	51.8, 10.1, -0.8	1570, 13.5, 9.7, 5.0	1100, 19.6, 5.3, 2.7	29.9
SIPAT-17		ring 6-3	6	82.1	53.0, 12.2, 3.5	1260, 17.1, 9.8, 4.9	1080, 24.1, 4.9, 2.7	14.3
SIPAT-20	07_10_02	ring 7-2	7	79.8	56.4, 10.0, 5.6	1670, 14.6, 8.7, 4.4	1340, 18.2, 5.1, 2.6	19.8
SIPAT-21	02_10_23	ring 7-5	7	81.6	48.8, 10.9, 3.0	1550, 15.8, 10.7, 5.6	1190, 20.7, 6.1,3.2	23.2
SIPAT-22	07_10_02	ring 7-1	7	81.4	52.6, 11.0, 2.7	1600, 15.2, 9.2, 4.8	1180, 20.3, 5.2, 3.0	26.3
Average				81.7	51.5, 10.8, 3.3	1500, 15.0, 10.8, 5.5	1200, 20.5, 6.2, 3.3	19.8
SG-S1			8	80.5	52.2, 9.8, 1.0	1370,14.5,9.6,5.0	1040,19.7,5.4,2.8	24.1
SG-S2			8	79.5	54.2, 9.6, 1.4	1400,14.3,9.0,4.7	1040,19.5,6.6,3.4	25.7
SG-S3			9	79.1	56.0, 9.8, 1.0	1370,14.7,8.0,4.2	1000,19.7,6.1,3.2	27.0
SG-S4			9	80.1	56.5, 9.7, 0.1	1310,15.4,9.6,5.0	970,20.5,7.0,3.6	26.0
SG-S5			9	80.9	54.5, 9.9, 3.6	1330,15.0,11.4,5.9	961,20.8,9.8,5.0	27.8
SG-S6			9	79.7	57.6, 9.7, 1.8	1290,15.5,8.3,4.6	980,20.3,5.9,3.1	24.0
SG-S7			9	79.3	55.2, 9.7, 0.5	1350,14.7,5.9,3.5	970,20.7,3.9,2.1	28.1
SG-S8			10	80.7	54.3, 9.8, 1.9	1350,15.2,8.1,4.3	1040,19.6,5.6,2.8	23.0
SG-S9			10	81.4	54.1, 9.8, -1.4	1320,15.0,6.3,3.3	960,20.0,4.9,2.5	27.3
SG-S10			10	79.5	54.3, 9.6, 3.4	1350,14.8,10.8,5.7	990,20.3,5.5,2.8	26.7
SG-S11			10	80.6	51.6, 10.0, 1.4	1330,15.0,6.9,3.7	980,20.4,5.6,2.9	26.3
SG-S12			10	81.2	53.4, 10.0, 0.6	1350,14.7,9.3,4.9	930,20.8,6.0,3.2	31.1
Average				80.2	54.5, 9.8, 1.3	1340,14.9,8.6,4.6	1000, 20.2,6.0,3.1	26.4
SIC-3			8	80.5	54.8, 10.9, 6.6	1380, 18.0, 15.1, 7.8	1020, 23.8, 10.9, 5.6	26.1
SIC-4			7	77.5	58.7, 11.9, -2.1	1170, 16.8, 9.3, 5.1	880, 23.2, 5.4, 2.9	24.8
SIC-5			7	78.6	59.4, 10.6, -1.8	1290, 15.5, 10.9, 6.1	910, 20.1, 5.4, 2.9	29.5
Average				78.9	57.6, 11.1, 0.9	1280, 16.8, 11.8, 6.3	940, 22.4, 7.2, 3.8	26.8

^{*} Light Yield (LY) and Energy Resolution (ER) are the average of the seven points measured along the crysals.

Note 1

Light Yield (LY) for the APD readout is measured with a quartz plate between the crystal and the APDs.

Width of the black band at the small end on the smallest side surface: 15 mm

Summary: Uniformity (δ) by APD

Diverse but consistent between vendors 15 mm black paint is not sufficient for $|\delta| < 3\%$

April 20, 2011 12/13/2011

Talk at SuperB EMC R&D Meeting by Ren-Yuan Zhu, Caltech
Talk in SuperB EMC R&D Meeting

Effect of Self-absorption

It is well known that part of the emission light is absorbed in the crystal: self-absorption.

Effect of Cerium Segregation

It is also known that cerium concentration along long LYSO crystals is not uniform, causing non-uniformity up to 10% at two ends, indicating up to 5% variation in δ is possible because of cerium segregation.

Ray-Tracing Simulation "set-up"

The simulation package was developed in early eighties, and was used for the L3 BGO and CMS PWO crystals.

SuperB LYSO crystals

Polished and Roughened Surfaces

- > The optical focusing, effect dominates non-uniformity: δ is about 13% for all polished surfaces.
- Roughened surface(s) can compensate the optical focusing effect.
- ➤ The best result is achieved by roughening only one side surface.

How Rough it Should Be?

The R_a matters.

A variation of 0.1 in R_a causes a 3% variation in δ .

Distance from detector (cm)

Real Exercise: Roughening SIC-LYSO-L3

The smallest side surface of SIC-LYSO-L3 was roughened to Ra = 0.3 at SIC via a two step process

Thanks to SICCAS for roughening this crystal

1st: lapped to Ra = 0.5 by using 11 μ m Al₂O₃ powder for 10 min with 2.5 kg weight. 2nd: lapped to Ra = 0.3 by using 6.5 μ m SiC powder for 3 min with 1.5 kg weight.

Relative Light Output & Uniformity

Ra = 0.3uniformize this crystal to < 2%. Ra = 0.25seems the best for this sample.

15

12/13/2011

Summary of Ra Used and Uniformity

With the smallest side surface roughened to an optimal value at Mindrum Precision, Inc. California

ID	As received (δ, %)	Opt_1	Opt_2	Opt. Ra	Opt. Ra	Ra (vendor)	Final (δ, %)
				LRU, δ=0	LRU, δ=-0.5%		
Samples s	ent to SILO on June 2	8, 2011					
SIPAT-13	6.8	0.10	0.21	0.23	0.23	0.22	-2.5
SIPAT-14	14.4	0.29	0.40	0.42	0.44	0.27/0.38	-0.6
SIPAT-15	11.9	0.21	0.34	0.36	0.37	0.35	2.8
SG-S10	10.8	0.18	0.31	0.33	0.34	0.32	1.2
SG-S11	6.9	0.10	0.22	0.23	0.24	0.24	0.9
Samples t	o be sent to SILO in F	uture				1	
SIPAT-11	12.9	0.24	0.36	0.39	0.40	0.38	1.0
SIPAT-12	14.2	0.28	0.39	0.42	0.43	0.35/0.41	0.4
SIPAT-16	9.7	0.16	0.28	0.30	0.31	0.28	2.6
SIPAT-17	9.8	0.16	0.29	0.30	0.31	0.29	-1.7
SIPAT-20	8.7	0.14	0.26	0.28	0.28	0.26	-1.9
SIPAT-21	10.7	0.18	0.31	0.33	0.34	0.32	-2.4
SIPAT-22	9.2	0.15	0.27	0.29	0.30	0.28	-1.5
SG-S1	9.6	0.16	0.28	0.30	0.31	0.27	2.9
SG-S2	9	0.14	0.27	0.28	0.29	0.25	2.6
SG-S3	8	0.12	0.24	0.26	0.27	0.22	2.4
SG-S4	9.6	0.16	0.28	0.30	0.31	0.27	1.8
SG-S5	11.4	0.20	0.32	0.35	0.36	0.30	-0.5
SG-S6	8.3	0.13	0.25	0.27	0.27	0.26	-1.9
SG-S7	5.9	0.09	0.19	0.20	0.21	0.19	1.7
SG-S8	8.1	0.13	0.24	0.26	0.27	0.24	-1.8
SG-S9	6.3	0.10	0.20	0.21	0.22	0.19	-0.5
SG-S12	9.3	0.15	0.27	0.29	0.30	0.29	-0.3
SIC-4	9.3	0.15	0.27	0.29	0.30	0.15/0.28	2.7
SIC-5	10.9	0.19	0.31	0.33	0.34	0.21/0.33	0.6
Samples a	Iready roughened						
SIC-3	15.1	0.31	0.41	0.44	0.46	0.30	-1.9

Required Roughness from Mindrum Data

Mindrum data fit a linear function:

 $Ra = 0.05 + 0.026 \delta$,

which can be used to define the optimal Ra values for the roughening processing at Mindrum.

Required Roughness from Mindrum Data

 $Ra = 0.05 + 0.027 \delta$

Is the optimal roughness value for $\delta = -0.5\%$

L.R.U. before & after Roughening

The average of non-uniformity (δ) is reduced from 9.8% to 0.26%. All crystals are within $|\delta| < 3\%$.

L.O. before & after Roughening

The average light output is reduced from 1,400 to 1,170 p.e./MeV. Crystals from all three vendors are consist.

L.O. Loss after Roughening

The roughening caused average LO loss is 17%. Crystals from SIPAT lose more light.

Summary for All 25 Crystals

With the smallest side surface roughened to an optimal roughness: 0.05 + 0.026 δ

							7	
Caltech-ID	Vendor-ID	Test-Beam position	Type	LT @ 420 nm (%)		LO, ER, δ & rms by APD (As)* (p.e./MeV), (σ , %), (δ , %) (rms, %)	LO & δ by APD (Uni)* (p.e./MeV) , (δ, %)	LO Loss (%)
SIPAT-11	02_08_08	ring 8-3	8	82.3	47.6, 10.7, 5.3	1420, 15.5, 12.9, 6.5	1130, 1.0	20.4
SIPAT-12	02_08_08	ring 8-1	8	82.2	46.5, 10.4, 3.9	1440, 15.1, 14.2, 7.1	1120, 0.4	22.2
SIPAT-13		ring 6-1	6	82.6	52.5, 11.5, 2.7	1440, 14.9, 6.8, 3.6	1280, - 2.5	11.1
SIPAT-14		ring 6-2	6	82.7	53.7, 10.9, 3.2	1500, 14.9, 14.4, 7.4	1160, -0.6	22.7
SIPAT-15		ring 6-4	6	80.7	52.8, 10.5, 3.4	1580, 13.7, 11.9, 6.0	970, 2.8	38.6
SIPAT-16		ring 6-5	6	81.1	51.8, 10.1, -0.8	1570, 13.5, 9.7, 5.0	1350, 2.6	14.0
SIPAT-17		ring 6-3	6	82.1	53.0, 12.2, 3.5	1260, 17.1, 9.8, 4.9	1120, -1.7	11.1
SIPAT-20	07_10_02	ring 7-2	7	79.8	56.4, 10.0, 5.6	1670, 14.6, 8.7, 4.4	1370, -1.9	18.0
SIPAT-21	02_10_23	ring 7-5	7	81.6	48.8, 10.9, 3.0	1550, 15.8, 10.7, 5.6	1090, -2.4	29.7
SIPAT-22	07_10_02	ring 7-1	7	81.4	52.6, 11.0, 2.7	1600, 15.2, 9.2, 4.8	1170, -1.5	26.7
Average				81.7	51.5, 10.8, 3.3	1500, 15.0, 10.8, 5.5	1176, -0.4	21.5
SG-S1			8	80.5	52.2, 9.8, 1.0	1370,14.5,9.6,5.0	1230, 2.9	10.2
SG-S2			8	79.5	54.2, 9.6, 1.4	1400,14.3,9.0,4.7	1270, 2.6	9.3
SG-S3			9	79.1	56.0, 9.8, 1.0	1370,14.7,8.0,4.2	1270, 2.4	7.3
SG-S4			9	80.1	56.5, 9.7, 0.1	1310,15.4,9.6,5.0	1180, 1.8	9.9
SG-S5			9	80.9	54.5, 9.9, 3.6	1330,15.0,11.4,5.9	920, -0.5	30.8
SG-S6			9	79.7	57.6, 9.7, 1.8	1290,15.5,8.3,4.6	1180, -1.9	8.5
SG-S7			9	79.3	55.2, 9.7, 0.5	1350,14.7,5.9,3.5	1270, 1.7	5.9
SG-S8			10	80.7	54.3, 9.8, 1.9	1350,15.2,8.1,4.3	1140, -1.8	15.6
SG-S9			10	81.4	54.1, 9.8, - 1.4	1320,15.0,6.3,3.3	1250, -0.5	5.3
SG-S10			10	79.5	54.3, 9.6, 3.4	1350,14.8,10.8,5.7	1070, 1.2	20.7
SG-S11			10	80.6	51.6, 10.0, 1.4	1330,15.0,6.9,3.7	1140, 0.9	14.3
SG-S12			10	81.2	53.4, 10.0, 0.6	1350,14.7,9.3,4.9	1140, -0.3	15.6
Average				80.2	54.5, 9.8, 1.3	1340,14.9,8.6,4.6	1172, 0.7	12.8
SIC-3			8	80.5	54.8, 10.9, 6.6	1380, 18.0, 15.1, 7.8	1020, -1.9	26.1
SIC-4			7	77.5	58.7, 11.9, -2.1	1170, 16.8, 9.3, 5.1	1090, 2.7	6.8
SIC-5			7	78.6	59.4, 10.6, -1.8	1290, 15.5, 10.9, 6.1	1150, 0.6	10.9
Average				78.9	57.6, 11.1, 0.9	1280, 16.8, 11.8, 6.3	1087, 0.4	14.6

Light Output (LO) and Energy Resolution (ER) are the average of the seven points measured along the crysals.

Note 1 Light Output (LO) for the APD readout is measured with a quartz plate between the crystal and the APDs.

Note 2 The smallest side surface is roughed to an Optimal Rougheness: $0.05 \pm 0.026 \,\delta$

Summary

24 LYSO crystals show that |δ| < 3% is achieved after roughening at Mindrum Precision, Inc., California, with Ra = 0.05 + 0.026 δ on the smallest side surface.

The average LO loss after the uniformization is about 17%, which is less than that by 15 mm black paint.

For mass production, we may live with a universal Ra = 0.3, or a maximum of two Ra values.

Before roughening

Before roughening

SG-S2 APD: Hamamatsu 2 x S8664-55 (Bias=417V, gain=50) APD covered with quartz Crystal wrapped with RIBA cell Normalized Light Output 1.1 Large end coupled to APD 0.9 $\delta = (9.0\pm1.5)$ Average L.O. = 1400 p.e./MeV 8.0 175 50 125 150 100 Distance from the end coupled to APD (mm)

Distance from the end coupled to APD (mm)

Before roughening

Before roughening

Before roughening

Before roughening

Before roughening

Before roughening

Before roughening

Before roughening

Before roughening

Before roughening

After roughening.

Before roughening

Before roughening

APD: Hamamatsu 2 x S8664-55 (Bias=417V, gain=50)

SIPAT-LYSO-L12

APD covered with quartz

Crystal wrapped with RIBA cell

Before roughening

Before roughening

After roughening.

Before roughening

SIPAT-LYSO-L15 APD: Hamamatsu 2 x S8664-55 (Bias=417V, gain=50) APD covered with quartz Crystal wrapped with RIBA cell Normalized Light Output Large end coupled to APD $\delta = (11.9 \pm 1.5)$ Average L.O. = 1580 p.e./MeV 8.0 25 50 75 175 100 125 150 200 Distance from the end coupled to APD (mm)

Before roughening

Before roughening

Before roughening

Before roughening

Before roughening

SIPAT-LYSO-L22 APD: Hamamatsu 2 x S8664-55 (Bias=417V, gain=50) APD covered with quartz Crystal wrapped with RIBA cell Normalized Light Output Large end coupled to APD $\delta = (9.2 \pm 1.5)$ Average L.O. = 1600 p.e./MeV 0.8 25 50 125 150 175 Distance from the end coupled to APD (mm)

Before roughening

Before roughening

Before roughening

SIC5 APD: Hamamatsu 2 x S8664-55 (Bias=417V, gain=50) APD covered with quartz Crystal wrapped with RIBA cell Normalized Light Output Large end coupled to APD

 $\delta = (10.9 \pm 1.5)$

100

Average L.O. = 1290 p.e./MeV

125

150

175

After roughening

8.0

25

50

75