

Crystal Development for the HHCAL Detector Concept

Ren-Yuan Zhu

California Institute of Technology

September 13, 2011

Homogeneous Hadron Calorimeter

A Fermilab team (A. Para et al.) proposed a total absorption homogeneous HCAL detector concept to achieve good jet mass resolution by measuring both Cherenkov and Scintillation light. It also eliminates the dead materials between classical ECAL and HCAL. This longitudinal segmented crystal HCAL is possible because of the latest development in large area compact readout devices.

Requirements for the materials to be used for HHCAL:
Short nuclear interaction length: ~ 20 cm.
Good UV transmittance: UV cut-off < 350 nm.
Some scintillation light, not necessary bright and fast.
Cost-effective material: < \$2/cc for 100 m³ !
Radiation hardness is not crucial at the ILC/CLIC.

A series of workshops on material development for HHCAL: 1st 2/19/2008 at SIC, Shanghai, 2nd 5/9/2010 at IHEP, Beijing, 3rd 10/30/2010 at Knoxville, will go with SCINT, CALOR & IEEE NSS. ANL, BGRI, Caltech, CERN, Fermilab, IHEP, Kharkov, LBL, Ningbo, SIC

2nd Workshop for the HHCAL

May 9, 2010, Beijing: http://indico.ihep.ac.cn/conferenceTimeTable.py?confld=1470

1) HHCAL and General Requirement:

Gene Fisk, FNAL: "<u>Fermilab's History in the Development of Crystals, Glasses and Si Detector Readout for</u> <u>Calorimetry</u>"

Adam Para, FNAL: "<u>Scintillating Materials for Homogeneous Hadron Calorimetry</u>" Steve Derenzo, LBL: "<u>Search for Scintillating Glasses and Crystals for Hadron Calorimetry</u>" Paul Lecoq, CERN: "<u>A CERN Contribution to the Dual Readout Calorimeter Concept</u>"

2) Materials for HHCAL (I) :

Alex Gektin, SCI: "<u>Crystal Development for HHCAL: Physics and Technological Limits</u>" Liyuan Zhang, Caltech: "<u>Search for Scintillation in Doped Lead Fluoride for the HHCAL Detector Concept</u>" Guohao Ren, SIC: "<u>Development of Halide Scintillation Crystals for the HHCAL Detector Concept</u>" Hui Yuan, SIC: "<u>BSO Crystals Development with the Modified Multi-crucible Bridgman Method for the</u> <u>HHCAL Detector Concept</u>"

3) Materials for the HHCAL (II) followed by discussions

Mingrong Zhang, BGRI: "<u>R&D on Scintillation Crystals and Special Glasses at BGRI</u>" Tiachi Zhao, U Washington/IHEP and Ningbo University: "<u>Study of Dense Scintillating Glass Samples</u>" Jing Tai Zhao, SIC: "<u>Status of Scintillating Ceramics and Glasses at SIC and Their Potential Applications for</u> <u>the HHCAL Detector Concept</u>"

Richard, Wigmans, Texas Tech University: "Some thoughts about homogeneous dual-readout calorimeters"

3rd Workshop for the HHCAL

October 31, 2010, Knoxville: http://www.nss-mic.org/2010/program/ListProgram.asp?session=HC1,2,3,4

- 1. A. Para, Prospects for High Resolution Hadron Calorimetry
- 2. G. Mavromanolakis , Studies on Dual Readout Calorimetry with Meta-Crystals
- 3. D. Groom, <u>Degradation of resolution in a homogeneous dual readout hadronic</u> <u>calorimeter</u>
- 4. S. Derenzo, <u>High-Throughput Synthesis and Measurement of Candidate Detector</u> <u>Materials for Homogeneous Hadronic Calorimeters</u>
- 5. M. Poulain, <u>Fluoride Glasses: State of Art and Prospects</u>
- 6. I. Dafinei, <u>High Density Fluoride Glasses, Possible Candidates for Homogeneous</u> <u>Hadron Calorimetry</u>
- 7. P. Hobson, Prospects for Dense Glass Scintillators for Homogeneous Calorimeters
- 8. G. Dosovitski, <u>Potential of Crystalline, Glass and Ceramic Scintillation Materials for</u> <u>Future Hadron Calorimetry</u>
- 9. Tianchi Zhao, Study on Dense Scintillating Glasses

10. Jin-tai Zhao, <u>BSO-Based Crystal and Glass Scintillators for Homogeneous Hadronic</u> <u>Calorimeter</u>

- 11. Guohao Ren, Development of RE-Doped Cubic PbF2 and PbClF Crystals for HHCAL
- 12, N. Cherepy, Transparent Ceramic Scintillators for Hadron Calorimetry
- 13. J. Dong, Experimental Study of Large Area GEM

14. H. Frisch, <u>The Development of Large-Area Flat-Panel Photodetectors with Correlated</u> <u>Space and Time Resolution</u>

The HHCAL Detector Concept

Industrial Halide Growth: Kharkov

A. Gektin: Talk at the 2nd Workshop for HHCAL

Industrial Oxide Growth: SICCAS

Guohao Ren: Talk at the 2nd Workshop for HHCAL

September 13, 2011

Cost for Crystal Growth

A. Gektin: for mass produced Si crystals raw materials share 70% of the cost

Crystal cost structure (Si)

- 68% raw material
- 10% crucible
- 8% system cost
- 4% labor cost
- 4% power
- 6% other

Candidate Crystals for HHCAL

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	PbWO ₄ (PWO)	PbF ₂	PbClF	Bi ₄ Si ₃ O ₁₂ (BSO)
ρ (g/cm³)	7.13	8.29	8.29 7.77 7.11		6.8?
λ _ι (cm)	22.8	20.7	21.0	24.3	23.1
n @ λ _{max}	2.15	2.20	1.82	2.15	2.06
τ _{decay} (ns)	300	30/10	?	30	100
λ _{max} (nm)	480	425/420	?	420	470
Cut-off λ (nm)	310	350	250	280	300
Light Output (%)	100	1.4/0.37	?	17	20
Melting point (°C)	1050	1123	842	608	1030
Raw Material Cost (%)	100	49	29	29	47

Glasses, ceramics and glass-ceramics are under consideration as well

September 13, 2011

Crystal for Homogeneous HCAL

Crystals of high density, good UV transmittance and some scintillation light, not necessary bright and fast, are required. The volume needed is 70 to 100 m³: cost-effective material. Following 2/19/08 workshop at SICCAS, 5 x 5 x 5 cm samples evaluated.

Cherenkov Needs UV Transparency

Cherenkov figure of merit

Using UG11 optical filter Cherenkov light can be effectively selected with negligible contamination from scintillation

Scintillation Selected with Filters

UG11/GG400 optical filter effectively selects Cherenkov/scintillation light

Cosmic Setup with Dual Readout

No Discrimination in Front Edge

Consistent timing and rise time for all Cherenkov and scintillation light pulses observed.

September 13, 2011

-6

-5

-2.5

Pulse Height (V)

PbF₂

Talk given in SCINT2011, Giessen by Ren-yuan Zhu, Caltech

Effect of Light Propagation

Reflectors increase light output, but slow down rising time Appropriate choice of time pick-off may avoid this effect

Slow Scintillation Decay May be Used

After 15 ns no Cherenkov contamination

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT

Scintillation was Observed in PbF₂:Gd

Fast Scintillation of 6.5 p.e./MeV with decay time of less than 10 ns

D. Shen *at al., Jour. Inor. Mater* **Vol. 101** 11 (1995). C. Woody *et al., IEEE Trans. Nucl. Sci.* **43** (1996) 1303.

PbF₂ Crystal Samples

A total of 116 samples with various rare earth doping were grown by vertical Bridgman method at SIC and Scintibow.

 \succ SIC samples: grown in **platinum** crucible, 1.5 X₀ (14 mm) cube.

> Scintibow samples: grown in graphite crucible, Φ 22 x 15 mm.

Luminescence Observed in PbF₂

Consistent Photo- and X-luminescence observed in doped PbF₂ samples grown by Prof. Dingzhong Shen of SIC/Scintibow.

Talk given in SCINT2011, Giessen by Ren-yuan Zhu, Caltech

Rare Earth Doped PbF₂

Multi-ms decay time observed, indicating f-f transitions of these rare earth elements which is too slow to be useful.

Anode Current

Anode current measured for doped PbF2 samples is at the same level as undoped crystals, indicating weak light.

¹³⁷Cs Pulse Height Spectra

No detectable scintillation was found in doped PbF₂ samples

Green Slow Scintillation in PWO

A factor of ten intensity of slow (µs) green scintillation light (560 nm) was observed in PbF₂/BaF₂ doped PWO.

R.H. Mao at al., in Calor2000 proceedings

Guohao Ren: Talk at the 2nd Workshop for HHCAL

D= 7.11g/cm³

Melting point =608°C Space group=P/4nmm

a=4.10Å;c= 7.22Å

Figure 2.1 Phase relations in PbCl2-PbF2 system

PbClF Crystal samples grown with Bridgman method

ID	PbFCl-1	oFCl-1 PbFCl-2		PbFCl-3		PbFCl-4		PbFCI-5		
Doping		Na 0.5a	Na 0.5at%							
Dimension (mm)	10x10x	2 10x10	10x10x2)x5 20x		<10x3 ~		10x10x9	
ID	PWO	PbFCl-1	Pt	FCI-2	PbFCl-3		PbFCl-4	ł	PbFCI-5	
X-luminescence		Peaked @ 420 nm								
L.O. (% PWO)	100	14		64	3	33	35		31	
L.O. (% BGO)	1.8	0.25		1.1	0.59		0.63		0.56	

X-Luminescence & Transmittance

Consistent X-luminescence peaked at 420 nm observed in all PbFCl samples. Transmittance cut-off at 300 nm.

¹³⁷Cs Spectrum & Decay Kinetics

Weak scintillation light with decay time of 24 ns observed in all PbFCl samples.

BSO Crystals

Hu Yuan of SIC: Talk at the 2nd Workshop for HHCAL

BSO Samples

14

BSO has two phases

Excitation, Emission & Transmittance

Improvement of UV absorption observed. The cut-off of transmission spectra moved toward 300 nm. Absorption visible between 350 and 600 nm.

¹³⁷Cs Spectrum & Decay Kinetics

Light output is about 15% of BGO, should be improved to 20% after the visible absorption removed. Decay time constant is ~100 ns.

September 13, 2011

Large Size BSO Sample

BSO Based Glass-Ceramic

J.T. Zhao, SIC: VUV excitation and emission spectra at 4K for BSO-based glass-ceramic 1 and 2 (annealed in different conditions), as-prepared glass and BSO crystal

Photo- & X- Luminescence

VUV-UV emission spectra of glass-ceramic 1 at 4K and room temperature

Qualitative comparison of X-ray excited luminescence of glassceramic 1 and 2 with PWO

September 13, 2011

Transmittance of 0.6 mm Samples

Optical transmittance of BSO glass-ceramic 1 and 2 comparing to the as-prepared glass with the sample thickness of 0.6mm

Summary

Cost-effective crystals are crucial for the HHCAL detector concept. Candidate materials are doped lead fluoride, PbFCl, BSO, PWO and BGO.

PbF₂ study:

- > No fast scintillation found in doped PbF₂ samples.
- Will look performance at low temperature to understand the quench at the RT with a Edinburgh spectrometer.
- **PbFCI:** Can it be grown in large size?
- **BSO and PWO: Can it be grown cost-effectively?**
- BSO glasses? Glass-Ceramics? Ceramics?
- □ If none of the above, BGO should work. What is the bottom line cost?