

Crystal Calorimeters in the Next Decade

Ren-Yuan Zhu

California Institute of Technology

June 8, 2009

Paper T1-2, SCINT09, Jeju, Korea

Why Crystal Calorimeter in HEP?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of total absorption crystal ECAL is well understood:
 - The best possible e/γ energy resolution;
 - Good e/ γ position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Crystals may also provide a foundation for a total absorption HCAL to achieve good resolution for hadrons and jets. Dual readout with Cherenkov and scintillation light would further help.

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?
d(LY)/dT [⊾] (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	SuperB	CMS ALICE PANDA	HHCAL?
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.								

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

PROFILE OF ILCHNOLO

Crystals for Homeland Security

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	LaCl₃(Ce)	Srl ₂ (Eu)	LaBr ₃ (Ce)
Density (g/cm³)	3.67	4.51	4.51	3.86	4.59	5.29
Melting Point (°C)	651	621	621	859	538	788
Radiation Length (cm)	2.59	1.86	1.86	2.81	1.95	1.88
Molière Radius (cm)	4.13	3.57	3.57	3.71	3.40	2.85
Interaction Length (cm)	42.9	39.3	39.3	37.6	37.0	30.4
Refractive Index ^a	1.85	1.79	1.95	1.9	?	1.9
Hygroscopicity	Yes	Slight	Slight	Yes	Yes	Yes
Luminescence ^b (nm) (at peak)	410	550	420	335	435	356
Decay Time ^b (ns)	245	1220	690	570 24	1100	20
Light Yield ^{b,c} (%)	100	165	88	13 42	221	130
d(LY)/dT ^ь (%/ ºC)	-0.2	0.4	0.4	0.1	?	0.2

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.

Crystal Density: Radiation Length

1.5 X₀ Cubic Samples: Hygroscopic: Sealed Non-hygro: Polished

Full Size Crystals:

BaBar CsI(TI): 16 X₀

L3 BGO: 22 X₀

CMS PWO(Y): 25 X₀

June 8, 2009

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Excitation, Emission, Transmission

$$T_s = (1-R)^2 + R^2(1-R)^2 + \dots = (1-R)/(1+R)$$
, with

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

No Self-absorption: BGO, PWO, BaF₂, Nal(TI) and CsI(TI)

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Emission Weighted QE

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

L.O. Temperature Coefficient

Temperature Range: 15 - 25°C

Large temperature coefficient: CsI, BGO, BaF₂ and PWO

¹³⁷Cs FWHM Energy Resolution

3% to 80% measured with Hamamatsu R1306 PMT with bi-alkali cathode

2% resolution and proportionality are important for y-ray spectroscopy between 10 keV to 2 MeV

Low Energy Non Proportionality

D: deviation from linearity: 60 keV to 1.3 MeV Good Crystals: LaBr₃, BaF₂, CsI(Na) and BGO

Statistical & Intrinsic Resolutions

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS ^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP:

PWO for PANDA at GSI: R. Novotny T4-2 LSO/LYSO for a Super B Factory

Crystals for a total absorption HCAL: A. Para T4-1

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

L3 BGO Resolution

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

BaBar CsI(TI) Resolution

Energy resolution A crystal calorimeter at low energies <u>.</u>.... . 월.06 BAR 0.05 0.04 0.03 $\pi^{0} ightarrow \gamma\gamma$ 0.03-3 GeV $η \rightarrow \gamma \gamma$ Bhabhas ³⁻⁹ GeV, 12h 0.02 $\chi_{c}\rightarrow J/\bar{\psi}~\gamma$ radioact. Source 0.01 MonteCarlo+BG 6580 CsI(TI) MonteCarlo

Good light yield of CsI(Tl) provides excellent energy resolution at low energies

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

CMS PWO Resolution

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

PANDA at GSI, Germany

LYSO Endcap for SuperB

SuperB Conceptual Design Report, INFN/AE-07/2, March (2007)

2.5 x 2.5 x 20 cm (18 X₀) Samples

LSO/LYSO with PMT Readout

≈10% FWHM resolution for ²²Na source (0.51 MeV) 1,200 p.e./MeV, 5/230 times of BGO/PWO

LSO/LYSO with APD Readout

L.O.: 1,500 p.e./MeV, 4/200 times of BGO/PWO Readout Noise: < 40 keV

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

γ-Ray Induced Damage

No damage in Photo-Luminescence

Transmittance recovery slow

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

γ-Ray Induced L.O. Damage

All samples show consistent radiation resistance

10% - 15% loss @ 1 Mrad by PMT

9% - 14% loss @ 1 Mrad by APD

LSO/LYSO ECAL Performance

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 %/
$$\sqrt{E} \oplus 0.5$$
 % $\oplus .001/E$

A Fermilab team (A. Para et al.) proposed a total absorption homogeneous HCAL detector concept for the International Linear Collider to achieve good jet mass resolution. It eliminates dead materials between classical ECAL and HCAL. This is possible because of the latest development in compact readout devices, such Si PMT. Readout with both Cherenkov and Scintillation light would further help as demonstrated by the Dream collaboration (R. Wigwams et al.). It is an option in SiD Lol.

A. Para, ILCWS08, Chicago: GEANT simulation shows jet energy resolution of about 22%/√E after corrections. This is much better than what has been achieved with PFA.

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Crystal for Homogeneous HCAL

Crystals of high density, good UV transmittance and some scintillation light, not necessary bright and fast, are required. The volume needed is 70 to 100 m³: cost-effective material. Following 2/19/08 workshop at SICCAS, 5 x 5 x 5 cm samples evaluated

Cherenkov Needs UV Transparency

Cherenkov figure of merit

Using UG11 optical filter Cherenkov light can be effectively selected with negligible contamination from scintillation

Scintillation Selected with Filter

GG400 optical filter effectively selects scintillation light with very small contamination from Cherenkov

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Cosmic Setup with Dual Readout

No Discrimination in Front Edge

Consistent timing and rise time for all **Cherenkov and** scintillation light pulses observed.

June 8, 2009

-6

-5

Pulse Height (V)

-3

PbF₂

5.2 ± 0.2 ns

 7.0 ± 0.2 ns

-2.5

0

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Slow Scintillation Decay May be Used

After 15 ns no Cherenkov contamination

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Green Slow Scintillation in PWO

Wavelength (nm)

A factor of ten intensity of slow (µs) green scintillation light (560 nm) was observed in PbF₂/BaF₂ doped PWO.

R.H. Mao at al., in Calor2000 proceedings

Z24

Z20

S762

3000

2000

Time (ns)

Scintillation was Observed in PbF₂(Gd)

Fast Scintillation of 6.5 p.e./MeV with decay time of less than 10 ns

D. Shen *at al., Jour. Inor. Mater* **Vol. 101** 11 (1995). C. Woody *et al., IEEE Trans. Nucl. Sci.* **43** (1996) 1303.

Scintillation Observed in PbF,

Consistent Photo- and X-luminescence observed in doped PbF₂ samples grown by Prof. Dingzhong Shen of SIC/Scintibow.

37

June 8, 2009

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Set-up Verified with BGO & CsI(TI)

Decay time consists with well known values

Eu and Sm Doped PbF₂

Red emission with multi-ms decay time observed

Tb and Er Doped PbF₂

Green emission with ms decay time observed

Ho Doped PbF₂

T1-2, SCINT09 at Jeju, Korea, Ren-yuan Zhu, Caltech

Summary

- Historically homogeneous ECAL provides good resolutions for e/γ measurements. An LSO/LYSO crystal calorimeter may provide excellent energy resolution over a large dynamic range down to MeV level for future HEP experiments, such as SuperB.
- The proposed homogeneous hadronic calorimeter (HHCAL) detector concept would provide good resolution for hadron and jet measurements. Because of the huge volume needed development of cost-effective UV transparent material is crucial. **Our initial investigation indicates that scintillating** PbF₂ seems the best choice. BSO, PWO and BGO may also serve as candidate. The SCINT community may help this development.