

Crystals for Homogeneous Hadron Calorimeter

Ren-Yuan Zhu

California Institute of Technology

October 23, 2008

Paper N55-4, 2008 NSS/MIC at Dresden, Germany

Why Crystal Calorimeter?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Crystals may also provide a foundation for a homogeneous hadron calorimeter with dual readout of Cherenkov and scintillation light to achieve good resolution for hadrons and jets.

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	CsI	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LYSO for a Super B Factory and CMS Endcap Upgrade, N69-8 PbF₂, BGO, PWO for Homogeneous HCAL

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂	
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77	
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824	
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93	
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21	
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0	
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82	
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No	
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?	
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?	
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?	
d(LY)/dT [⊾] (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?	
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	SuperB	CMS ALICE PANDA	HHCAL?	
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.									

Crystal for Homogeneous HCAL

Calorimeter with dual readout has been pursued by the Dream collaboration (R. Wigwams et al.) and a Fermilab team (A. Para et al.) for the ILC. The later proposed homogeneous HCAL eliminating dead material between classical ECAL and HCAL.

Cherenkov Needs UV Transparency

Cherenkov figure of merit

Using UG11 optical filter Cherenkov light can be effectively selected with negligible contamination from scintillation

Scintillation Selected with Filter

GG400 optical filter effectively selects scintillation light with very small contamination from Cherenkov

Cosmic Setup with Dual Readout

No Discrimination in Front Edge

BGO

9

Consistent timing and rise time for all **Cherenkov and** scintillation light pulses observed.

10/23/2008

Pulse Height (V)

-3

-6

-5

Slow Scintillation Decay May be Used

After 15 ns no Cherenkov contamination

NSS08 Paper N55-4, Ren-yuan Zhu, Caltech

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT

Green Slow Scintillation in PWO

Wavelength (nm)

A factor of ten intensity of slow (μ s) green scintillation light (560 nm) was observed by PbF₂/BaF₂ doping in PWO.

R.H. Mao at al., in Calor2000 proceedings

Z24

Z20

S762

3000

2000

Time (ns)

Scintillation Observed in PbF₂

Consistent Photoand X-luminescence observed in some doped PbF₂ samples grown by Prof. **Dingzhong Shen of** SIC/Scintibow.

Result is consistent with publications: D. Shen at al., Jour. Inor. Mater Vol. 101 11 (1995). C. Woody et al., Proceedings of SCINT95 (1996).

10/23/2008

Set-up Verified with BGO & CsI(TI)

Decay time consists with well known values

Decay Time of Doped PbF₂: ms

Scintillation too weak for Pr and Gd doped PbF₂ samples

Summary

- Historically homogeneous electromagnetic calorimeter provides excellent resolution for electron and photon measurements.
- The proposed homogeneous hadronic calorimeter would provide good resolution for hadron and jet measurements.
- Because of the huge volume needed to construct a homogeneous HCAL development of cost-effective UV transparent material is crucial. Our initial investigation indicates that scintillating PbF₂ seems the best choice for this detector concept.