

Precision Crystal Calorimetry in High Energy Physics **Ren-Yuan Zhu California Institute of Technology** August 13, 2008

Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X, SPIE 2008, San Diego

Why Crystal Calorimeter?

- Photons and electrons are fundamental particles. Precision e/γ enhance physics discovery potential.
- Crystal calorimeter performance in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Crystals may also provide a foundation for homogeneous hadron calorimeter with dual readout of Cherenkov and scintillation light.

Physics with Crystal Calorimeters (I)

Charmonium system observed by CB through Inclusive photons

CB Nal(Tl)

Charmed Meson in Z Decay

$$\chi_{c1} \rightarrow J/\psi\gamma$$

$H \rightarrow \gamma \gamma$ Search Needs Precision ECAL

History of Crystal Development

M.J. Weber, J. Lumin. 100 (2002) 35

August 13, 2008

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	Csl	BaF ₂	CeF ₃	BGO	PWO(Y)	LSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.51	4.89	6.16	7.13	8.3	7.40
Melting Point (°C)	651	621	621	621	1280	1460	1050	1123	2050
Radiation Length (cm)	2.59	1.86	1.86	1.86	2.03	1.70	1.12	0.89	1.14
Molière Radius (cm)	4.13	3.57	3.57	3.57	3.10	2.41	2.23	2.00	2.07
Interaction Length (cm)	42.9	39.3	39.3	39.3	30.7	23.2	22.8	20.7	20.9
Refractive Index ^a	1.85	1.79	1.95	1.95	1.50	1.62	2.15	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420	420 310	300 220	340 300	480	425 420	402
Decay Time ^b (ns)	245	1220	690	30 6	650 0.9	30	300	30 10	40
Light Yield ^{b,c} (%)	100	165	88	3.6 1.1	36 4.1	7.3	21	0.3 0.1	85
d(LY)/dT [⊾] (%/ ºC)	-0.2	0.4	0.4	-1.4	-1.9 0.1	0	-0.9	-2.5	-0.2
Experiment	Crystal Ball	BaBar BELLE BES III	-	KTeV	(L*) (GEM) TAPS	-	L3 BELLE	CMS ALICE PANDA	SuperB
a. at peak of	emission;	a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.							

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Crystal Density: Radiation Length

1.5 X₀ Cubic Samples:
Hygroscopic: Sealed
Non-hygro: Polished

Full Size Crystals: *BaBar* CsI(Tl): 16 X₀ L3 BGO: 22 X₀ CMS PWO(Y): 25 X₀

August 13, 2008

PIE 2008, San Diego, Ren-yuan Zhu, Caltech

Excitation, Emission, Transmission

$$T_s = (1 - R)^2 + R^2(1 - R)^2 + ... = (1 - R)/(1 + R)$$
, with

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

No Self-absorption: BGO, PWO, BaF₂, NaI(TI) and CsI(TI)

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Fast Crystal Scintillators

Slow Crystal Scintillators

Emission Weighted QE

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

L.O. Temperature Coefficient

Temperature Range: 15 - 25°C

Large temperature coefficient: CsI, BGO, BaF₂ and PWO

¹³⁷Cs FWHM Energy Resolution

3% to 80% measured with Hamamatsu R1306 PMT with bi-alkali cathode

2% resolution and proportionality are important for y-ray spectroscopy between 10 keV to 2 MeV

Low Energy Non Proportionality

D: deviation from linearity: 60 keV to 1.3 MeV Good Crystals: LaBr₃, BaF₂, CsI(Na) and BGO

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	CsI	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LYSO for a Super B Factory PbF₂, BGO, PWO for Homogeneous HCAL

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

L3 BGO Resolution

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Crystal Degradation in situ

L3 BGO degrades 6 – 7% in 7 years

BaBar CsI(Tl): 1 - 3 % per year

Radiation Induced Absorption

Measured with Hitachi U-3210 Photospectrometer

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Dose Rate Dependence

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 468-476

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

August 13, 2008

No Dose Rate Dependence

No recovery: no dose rate dependence

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Radiation Damage Effects

- Induced absorption caused by color center formation:
 - reduced light attenuation length and thus light output, and maybe
 - degraded of light response uniformity (LRU).
- Induced phosphorescence:
 - increase readout noise.
- Reduced scintillation light yield:
 - reduce light output and degrade light response uniformity.

ltem	CsI(Tl)	Csl	BaF_2	BGO	PbWO ₄
Color Centers	Yes	Yes	Yes	Yes	Yes
Fluorescence	Yes	Yes	Yes	Yes	Yes
Scintillation	No	No	No	No	No
Recover @RT	Slow	Slow	No	Yes	Yes
Dose Rate Dependence	No	No	No	Yes	Yes
Thermall Annealing	No/Yes	No/Yes	Yes	Yes	Yes
Optical Bleaching	No/Yes	No/Yes	Yes	Yes	Yes

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

CsI(TI) Damage Mechanism

Nucl. Instr. And Meth. A340 (1994) 442

- Oxygen Contamination is known to cause radiation damage for other alkali halide scintillators. In BaF₂, for example, hydroxyl (OH⁻) may be introduced into crystal through a hydrolysis process, and latter decomposed to interstitial and substitutional centers by radiation through a radiolysis process: $H_i^0 + O_s^-$ or $H_s^- + O_i^0$, where subscript i and s refer to interstitial and substitutional centers respectively.
- Possible means for trace oxygen identification:
 - Secondary Ionization Mass Spectroscopy (SIMS);
 - Gas Fusion (LEGO); and
 - Energy Dispersive x-Ray (EDX).

SIMS Study & CsI(TI) Improvement

Secondary Ion Mass Spectroscopy revealed depth profile of oxygen contamination; Oxygen control improves CsI(Tl) quality

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Nucl. Instr. And Meth. A413 (1998) 297

- Crystal defects, such as Oxygen Vacancies, are known to cause radiation damage for other oxide scintillators. In BGO, for example, three common radiation induced absorption bands at 2.3, 3.0 and 3.8 eV were found in a series of 24 doped samples, indicating defect-related color centers.
- Possible means for oxygen vacancy identification:
 - Electron Paramagnetic Resonance (ESR) and Electron-Nuclear Double Resonance (ENDOR);
 - Transmission Electron Microscopy (TEM)/Energy Dispersion
 Spectrometry (EDS); and
 - A pragmatic way: Oxygen Compensation by Post-Growing Annealing in Oxygen Rich Atmosphere.

TEM/EDS Study on PWO Crystals

TOPCON-002B scope, 200 kV, 10 uA, 5 to10 nm black spots identified JEOL JEM-2010 scope and Link ISIS EDS localized Stoichiometry Analysis

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	Point ₁	Point ₂	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

Oxygen Vacancies Identified

BGO/PWO Quality Improvement

Nucl. Instr. and Meth. A302 (1991)

BGO damage recovery after 2.5 krad

Nucl. Instr. and Meth. A480 (2002) 470

PWO damage at different dose rate

LYSO Endcap for SuperB

SuperB Conceptual Design Report, INFN/AE-07/2, March (2007)

2.5 x 2.5 x 20 cm (18 X₀) Samples

August 13, 2008

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

LSO/LYSO with PMT Readout

≈10% FWHM resolution for ²²Na source (0.51 MeV) 1,200 p.e./MeV, 5/230 times of BGO/PWO

LSO/LYSO with APD Readout

L.O.: 1,500 p.e./MeV, 4/200 times of BGO/PWO Readout Noise: < 40 keV

γ-Ray Induced Damage

No damage in Photo-Luminescence

Transmittance recovery slow

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

γ -Ray Induced L.O. Damage

All samples show consistent radiation resistance

10% - 15% loss @ 1 Mrad by PMT

9% - 14% loss @ 1 Mrad by APD

LSO/LYSO ECAL Performance

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 % /
$$\sqrt{E} \oplus 0.5$$
 % $\oplus .001/E$

Homogeneous HCAL

Measure both Cherenkov and scintillation light independently to achieve the best hadronic energy resolution by compensation.

BGO

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

PWO

Spectral Separation of Cherenkov & Scintillation

August 13, 2008

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

PbF,

^oulse Height (V)

-4

-5

-6

August 13, 2008

-5

-2.5

Pulse Shape Separation?

Consistent timing and rise time for all **Cherenkov** and scintillation light pulses.

Pulse Shape Separation

The slow scintillation decay may be useful

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

140

Photons (arbitrary unit)

Green Slow Scintillation in PWO

A factor of ten intensity of slow green scintillation (560 nm) was observed by selective doping in PWO: useful for dual readout R.H. Mao at al., in Calor2000 proceedings

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

1000

20

400

500

600

Wavelength (nm)

700

800

40

20

Scintillation Observed in PbF₂

Some rear earth doping seems introducing scintillation, but not at the level can be measured by source.

Investigation is continuing aiming at developing cost effective crystals for dual readout.

SPIE 2008, San Diego, Ren-yuan Zhu, Caltech

Summary

- Precision crystal calorimeter provides the best possible energy and position resolutions for electrons and photons as well as good e/γ identification and reconstruction efficiencies.
- Progress has been made in understanding crystal radiation damage and improving qualities of mass produced crystals.
- An LSO/LYSO crystal calorimeter provides excellent energy resolution over a large dynamic range down to MeV level for future HEP and NP experiments.
- Because of the expected huge volume needed development of cost-effective UV transparent material, such as doped PbF₂, is crucial for the homogeneous HCAL concept.