

Crystal Calorimeters in the Next Decade

Ren-Yuan Zhu

California Institute of Technology

May 26, 2008

International Conference on Calorimetry in Particle Physics, Pavia, Italy

Why Crystal Calorimeter?

- Photons and electrons are fundamental particles. Precision e/γ enhance physics discovery potential.
- Crystal calorimeter performance in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Crystals may also provide a foundation for homogeneous hadron calorimeter with dual readout of Cherenkov and scintillation light.

History of Crystal Development

M.J. Weber, J. Lumin. 100 (2002) 35

May 26, 2008

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	Csl	BaF ₂	CeF ₃	BGO	PWO(Y)	LSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.51	4.89	6.16	7.13	8.3	7.40
Melting Point (°C)	651	621	621	621	1280	1460	1050	1123	2050
Radiation Length (cm)	2.59	1.86	1.86	1.86	2.03	1.70	1.12	0.89	1.14
Molière Radius (cm)	4.13	3.57	3.57	3.57	3.10	2.41	2.23	2.00	2.07
Interaction Length (cm)	42.9	39.3	39.3	39.3	30.7	23.2	22.8	20.7	20.9
Refractive Index ^a	1.85	1.79	1.95	1.95	1.50	1.62	2.15	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420	420 310	300 220	340 300	480	425 420	402
Decay Time ^b (ns)	245	1220	690	30 6	650 0.9	30	300	30 10	40
Light Yield ^{b,c} (%)	100	165	88	3.6 1.1	36 4.1	7.3	21	0.3 0.1	85
d(LY)/dT ʰ (%/ ºC)	-0.2	0.4	0.4	-1.4	-1.9 0.1	0	-0.9	-2.5	-0.2
Experiment	Crystal Ball	BaBar BELLE BES III	-	KTeV	(L*) (GEM) TAPS	-	L3 BELLE	CMS ALICE PANDA	SuperB
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.									

May 26, 2008

Excitation, Emission, Transmission

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Fast Crystal Scintillators

Slow Crystal Scintillators

Calor 2008, Pavia, Ren-yuan Zhu, caltech

Emission Weighted QE

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

L.O. Temperature Coefficient

Temperature Range: 15 - 25°C

¹³⁷Cs FWHM Energy Resolution

8% to 80% measured with Hamamatsu R1306 PMT with bi-alkali cathode

2% resolution and proportionality are important for the homeland security application for yray spectroscopy between 10 keV to 2 MeV

LaBr₃ for Homeland Security

Fast decay time: 20 ns as compared to LSO: 40 ns High light yield 3,810 p.e./MeV as compared to LSO: 2,200 p.e./MeV Excellent energy resolution ≈3% as compared to ≈9% of LYSO

Low Energy Non Proportionality

D: deviation from linearity: 60 keV to 1.3 MeV Good Crystals: LaBr₃, BaF₂, CsI(Na) and BGO

Statistical & Intrinsic Resolutions

 $\sigma^2 = \sigma^2_{intrinsic} + \sigma^2_{statistical}$, ratio = $\sigma_{intrinsic} / \sigma_{statistical}$ Good crystals: BGO and LaBr₃

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X_0)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	10 ⁴	104	104	104	10 ⁴	10 ⁵

Future crystal calorimeters in HEP:

PWO for PANDA at GSI

LYSO for a Super B Factory

PbF₂, BGO, PWO for Homogeneous HCAL

LYSO Endcap for SuperB

David Hitlin The SuperB Project N01-3 IEEE NSS 2007

2.5 x 2.5 x 20 cm (18 X₀) Samples

LSO/LYSO with PMT Readout

≈10% FWHM resolution for ²²Na source (0.51 MeV) 1,200 p.e./MeV, 5/230 times of BGO/PWO

LSO/LYSO with APD Readout

L.O.: 1,500 p.e./MeV, 4/200 times of BGO/PWO Readout Noise: < 40 keV

γ-Ray Induced Damage

No damage in Photo-Luminescence

Transmittance recovery slow

γ-Ray Induced L.O. Damage

All samples show consistent radiation resistance

10% - 15% loss @ 1 Mrad by PMT

9% - 14% loss @ 1 Mrad by APD

LSO/LYSO ECAL Performance

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 % /
$$\sqrt{E} \oplus 0.5$$
 % \oplus .001/E

Homogeneous HCAL

Measure both Cherenkov and scintillation light independently to achieve the best hadronic energy resolution by compensation.

Spectral Separation of Cherenkov & Scintillation

Pulse Shape Separation?

Consistent timing and rise time for all **Cherenkov** and scintillation light pulses.

May 26, 2008

-4

-5

-6

-5

^oulse Height (V)

PbF,

5.2 ± 0.2 ns

7.0 ± 0.2 ns

-2.5

0

Pulse Shape Separation

The slow scintillation decay may be useful

Calor 2008, Pavia, Ren-yuan Zhu, caltech

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT

Green Slow Scintillation in PWO

A factor of ten intensity of slow green scintillation (560 nm) was observed by selective doping in PWO: useful for dual readout R.H. Mao at al., in Calor2000 proceedings

Z24

Z20

May 26, 2008

400

500

600

Wavelength (nm)

700

800

1000

2000

Time (ns)

Calor 2008, Pavia, Ren-yuan Zhu, caltech

3000

20

Photons (arbitrary unit)

Scintillation Observed in PbF₂

Some rear earth doping seems introducing scintillation, but not at the level can be measured by source.

Investigation is continuing aiming at developing cost effective crystals for dual readout.

Summary

- Precision crystal calorimetry provides the best possible energy and position resolutions for electrons and photons as well as good e/ γ identification and reconstruction efficiencies.
- An LSO/LYSO crystal calorimeter provides excellent energy resolution over a large dynamic range down to MeV level for future HEP and NP experiments.
- Because of the expected huge volume needed development of cost-effective UV transparent material, such as doped PbF₂, is crucial for the homogeneous HCAL concept.