

Development of LYSO Crystals for CMS at SLHC

Ren-Yuan Zhu

California Institute of Technology

L3 BGO: 6 – 7% in 7 years

BaBar CsI(TI): 1 - 3 % per year

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

Correlation: LO Loss versus RIAC

LO Loss = 1.1/0.77 RIAC for BTCP/SIC for PMT readout with 100% coverage

LAL Affects LO and LRU

Nucl. Instr. And Meth. A413 (1998) 297

Relation between light collection efficiency (η_m) and light attenuation length (1/RIAC) depends on light path in crystal LRU would not degrade much if LAL > 80 cm

Light collection efficiency, fit to a linear function of distance to the small end of the crystal, was determined with two parameters: the light collection efficiency at the middle of the crystal and the uniformity.

LAL (cm)	20	40	60	80	200				
Large Area Photo Detector, covering 100% back face									
η_m (%)	9.5±.2	15.7±.4	19.2±.5	21.6±.6	$26.9 \pm .7$				
δ (%)	23 ±1	$-4.6 \pm .8$	-11±1	-15±1	-15±1				
ϕ 5 mm Photo Detector, covering 3.7% back face									
η_m (%)	.38±.04	.74±.08	1.1±.1	1.4±.2	3.0±.3				
δ (%)	23±4	-3.5 ± 4	-12±4	-16±4	-17±3				
$rac{\eta_m(\phi 5mm)}{\eta_m(Full)}$ (%)	4.0	4.7	5.7	6.5	11				

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

RIAC of Mass Produced Crystals

0.15 (45%) / 0.10 (20%), 0.69 (45%) / 0.51 (32%) and 1.43 (50%) / 1.16 (48%) at 15, 400 and 9,000 rad/h for BTCP/SIC respectively

LSO/LYSO Mass Production

CTI: LSO

Saint-Gobain LYSO

Additional Capability: SIPAT @ Sichuan, China

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

BGO, LSO & LYSO Samples

2.5 x 2.5 x 20 cm (18 X₀)

Light Output Temperature Coefficient

Temperature Range: 15°C ~ 25°C

LSO/LYSO with PMT Readout

~10% FWHM resolution for ²²Na source (0.51 MeV) 1,200 p.e./MeV, 5/230 times of BGO/PWO

LSO/LYSO with APD Readout

L.O.: 1,500 p.e./MeV, 4/200 times of BGO/PWO Readout Noise: < 40 keV

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

γ-Rays Induced Damage

No damage in Photo-Luminescence

Transmittance recovery slow

γ-Rays Induced Transmittance Damage

300°C thermal annealing effective

LT damage: 8% @ 1 Mrad

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

γ-ray Induced Phosphorescence

Phosphorescence peaked at 430 nm with decay time constant of 2.5 h observed

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

γ-ray Induced Readout Noise

Sample	L.Y.	F	$Q_{15 \text{ rad/h}}$	$Q_{500\ rad/h}$	${f O}_{15 m rad/h}$	${f O}_{ m 500~rad/h}$
ID	p.e./MeV	µA/rad/h	p.e.	p.e.	MeV	MeV
CPI	1,480	41	6.98x10 ⁴	2.33x10 ⁶	0.18	1.03
SG	1,580	42	7.15x10 ⁴	2.38x10 ⁶	0.17	0.97

 γ -ray induced PMT anode current can be converted to the photoelectron numbers (Q) integrated in 100 ns gate. Its statistical fluctuation contributes to the readout noise (σ): 0.2 & 1 MeV @ 15 & 500 rad/h.

Six LSO & LYSO Samples

2.5 x 2.5 x 20 cm (18 X₀) Bar

Three CTI LSO samples are provided by Chuck Melcher.

Three LYSO samples are purchased from Saint-

Gobain.

Statistical Comparison

Recent LYSO crystals are better than LSO

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

Sichuan Institute of Piezoelectric and Acousto-optic Technology (SIPAT)

China Electronics Technology Corporation (CETC) No. 26 Research Institute, www.sipat.com

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

SIPAT: Furnace & R&D Issues

- Raw material:
 - Lu₂O₃: 99.995%
 - SO₂: 99.999%
- Stoichiometry
- Temperature Gradient
- Growth Parameter Optimization
- Thermal Annealing
- Iridium Crucible Maintenance
- Power Supply Stability
- Chilled Water Stability

Started 2001 with Significant Progress in the last year

SIPAT Ø 60 x 250 mm LYSO Ingots

SIPAT Czochralski Furnaces

- Received in the middle of August with dimension of 25 x 25 x 200 mm and good visual inspection.
- It was first annealed at 300°C for 10 hours and with its initial optical and scintillation properties measured.
- Together with SG-L3, two samples were irradiated with integrated doses of 10, 10², 10³, 10⁴ 10⁵ and 10⁶.
- Samples were kept in dark after irradiation for 48 hours before optical and scintillation property measurement.
- Damage to transmittance, light output and uniformity are compared with samples from CTI, CPI and Saint-Gobain.

Initial Optical Properties

Excitation: emission @ 402 nm Emission: excitation @

358 nm

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

Light Output & Decay Kinetics

Compatible with the first batch large size samples from CTI and Saint-Gobain, and is 86% of the 'best'

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

γ-Ray Induced Radiation Damage

Scintillation spectrum not affected by irradiation ~8% damage @ 420 nm after 1 Mrad irradiation

Comparison of L.O. Damage

All samples show consistent radiation resistance

10% - 15% loss by PMT

9% - 14% loss by APD

CMS ECAL SLHC Workshop, Ren-yuan Zhu, Caltech

LSO/LYSO ECAL Performance

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 % /
$$\sqrt{E} \oplus 0.5$$
 % \oplus .001/E

Summary

- Lead tungstate crystals suffer from radiation damge originated from photons/electrons and hadrons. While the real consequence will only be known after the ECAL is *in situ* at LHC, existing data indicate that significant light output loss and thus energy resolution degradation is expected.
- LYSO crystals with blight, fast scintillation and excellent radiation hardness against γ irradiation seems an excellent candidate for the ECAL endcap upgrade at SLHC.
- While LYSO crystal quality is adequate for SuperB, work is needed to develop LYSO crystals of CMS size and to understand the consequence of damage caused by neutrons and hadrons.