

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

Ren-Yuan Zhu

California Institute of Technology

Fermilab Colloquium, April 2, 2008

Why Crystal Calorimeter?

- Photons and electrons are fundamental particles. Precision e/γ enhance physics discovery potential.
- Crystal calorimeter performance in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Crystals may also provide a foundation for homogeneous hadron calorimeter with dual readout.

Physics with Crystal Calorimeters (I)

Charmed Meson in Z Decay

$$\chi_{c1} \rightarrow J/\psi\gamma$$
L3 BGO

CB Nal(TI)

Charmonium system observed

by CB through Inclusive photons

Physics with Crystal Calorimeters (II)

A CHNOLO

$H \rightarrow \gamma \gamma$ Search Needs Precision ECAL

History of Crystal Development

M.J. Weber, J. Lumin. 100 (2002) 35

April 2, 2008

Fermilab Colloquium, Ren-yuan Zhu, Caltech

Mass-Produced Crystal Scintillators

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	Csl	CeF ₃	BaF ₂	BGO	PWO(Y)	LSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.51	6.16	4.89	7.13	8.3	7.40
Melting Point (°C)	651	621	621	621	1460	1280	1050	1123	2050
Radiation Length (cm)	2.59	1.86	1.86	1.86	1.65	2.03	1.12	0.89	1.14
Molière Radius (cm)	4.13	3.57	3.57	3.57	3.38	3.10	2.23	2.00	2.07
Interaction Length (cm)	42.9	39.3	39.3	39.3	23.17	30.7	22.8	20.7	20.9
Refractive Index ^a	1.85	1.79	1.95	1.95	1.62	1.50	2.15	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420	420 310	340 300	300 220	480	425 420	402
Decay Time ^b (ns)	245	1220	690	30 6	30	650 0.9	300	30 10	40
Light Yield ^{b,c} (%)	100	165	88	3.6 1.1	7.3	36 4.1	21	0.3 0.1	85
d(LY)/dT ʰ (%/ ºC)	-0.2	0.4	0.4	-1.4	0	-1.9 0.1	-0.9	-2.5	-0.2
Experiment	Crystal Ball	BaBar BELLE BES III	-	KTeV	-	(L*) (GEM) TAPS	L3 BELLE	CMS ALICE PrimEx	SuperB
a, at peak of emis	ssion: b.	up/low ro	w: slow/fa	ast compo	nent: c. C	E of rea	dout dev	vice taken	out.

Crystal Density: Radiation Length

April 2, 2008

Fermilab Colloquium, Ren-yuan Zhu, Caltech

Excitation, Emission, Transmission

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Fast Scintillators

Slow Scintillators

Emission Weighted Quantum Efficiency

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

Light Output Temperature Coefficient

춖

Temperature Range: 15°C ~ 25°C

¹³⁷Cs γ-ray Resolution at 10%

ᅷ

Measured with Hamamatsu R1306 PMT with Bi-alkali Cathode

The best energy resolution for γ-ray spectroscopy

Currently expansive: ~\$200/cc

Potential low cost in future, so may replace Nal(TI) for H.S...

Crystal Calorimeters in HEP

Date	75-85	80-00	80-08	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(TI)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(TI)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	$WS^a+Si\;PE$	D PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	104	104	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LYSO for a Super B Factory BGO, PbF2, PWO for Homogeneous HCAL

PANDA at GSI, Germany

LYSO Endcap for SuperB

Homogeneous HCAL for ILC

*

L3 BGO Resolution

BaBar Csl(TI) Resolution

A crystal calorimeter at low energies

Good light yield of CsI(TI) provides excellent energy resolution at low energies

April 2, 2008

Fermilab Colloquium, Ren-yuan Zhu, Caltech

23

Crystal Degradation *in situ*

L3 BGO degrades 6 – 7% in 7 years

BaBar CsI(TI): 1 - 3 % per year

Radiation Damage Effects

- Induced absorption caused by color center formation:
 - reduced light attenuation length and thus light output, and maybe
 - degraded of light response uniformity (LRU).
- Induced phosphorescence:
 - increase readout noise.
 - Reduced scintillation light yield:
 - reduce light output and degrade light response uniformity.

ltem	CsI(TI)	Csl	BaF_2	BGO	PbWO ₄
Color Centers	Yes	Yes	Yes	Yes	Yes
Fluorescence	Yes	Yes	Yes	Yes	Yes
Scintillation	No	No	No	No	No
Recover @RT	Slow	Slow	No	Yes	Yes
Dose Rate Dependence	No	No	No	Yes	Yes
Thermall Annealing	No/Yes	No/Yes	Yes	Yes	Yes
Optical Bleaching	No/Yes	No/Yes	Yes	Yes	Yes

Radiation Induced Absorption

Measured with Hitachi U-3210 Photospectrometer

PWO Radiation Damage

No damage in scintillation mechanism No damage in resolution if light attenuation length > 1 m

Resolution degradation is not recoverable if LRU is damaged

LAL affects LRU

Nucl. Instr. And Meth. A413 (1998) 297

Ray-Tracing simulation for CMS PWO crystals shows no change in LRU if LAL is longer than 3.5 crystal length

Light collection efficiency, fit to a linear function of distance to the small end of the crystal, was determined with two parameters: the light collection efficiency at the middle of the crystal and the uniformity.

LAL (cm)	20	40	60	80	200			
Large Area Photo Detector, covering 100% back face								
η_m (%)	9.5±.2	15.7±.4	19.2±.5	21.6±.6	$26.9 \pm .7$			
δ (%)	23 ±1	-4.6±.8	-11±1	-15±1	-15±1			
ϕ 5 mm Photo Detector, covering 3.7% back face								
η_m (%)	.38±.04	.74±. 0 8	$1.1 {\pm} .1$	$1.4 {\pm}.2$	3.0±.3			
δ (%)	23±4	-3.5 ± 4	-12±4	-16±4	-17±3			
$\frac{\eta_m(\phi 5mm)}{\eta_m(Full)}$ (%)	4.0	4.7	5.7	6.5	11			

Laser Monitoring is Effective

IEEE Trans. Nucl. Sci. vol. 55 (2008) 637-643

120 GeV electrons reconstructed by 3x3 crystal matrix

Dose Rate Dependence

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 468-476

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

April 2, 2008

No Dose Rate Dependence

No recovery: no dose rate dependence

Fermilab Colloquium, Ren-yuan Zhu, Caltech

Nucl. Instr. And Meth. A340 (1994) 442

Oxygen Contamination is known to cause radiation damage for other alkali halide scintillators. In BaF₂, for example, hydroxyl (OH^{-}) may be introduced into crystal through a hydrolysis process, and latter decomposed to interstitial and substitutional centers by radiation through a radiolysis process: $H_i^0 + O_s^-$ or $H_s^- + O_i^0$, where subscript i and s refer to interstitial and substitutional centers respectively.

Possible means for trace oxygen identification:

- Secondary Ionization Mass Spectroscopy (SIMS);
- Gas Fusion (LEGO); and
- Energy Dispersive x-Ray (EDX).

SIMS Study & CsI(TI) Improvement

Secondary Ion Mass Spectroscopy revealed depth profile of oxygen contamination; Oxygen control improves CsI(TI) quality

April 2, 2008

Fermilab Colloquium, Ren-yuan Zhu, Caltech

Nucl. Instr. And Meth. A413 (1998) 297

 Crystal defects, such as Oxygen Vacancies, are known to cause radiation damage for other oxide scintillators. In BGO, for example, three common radiation induced absorption bands at 2.3, 3.0 and 3.8 eV were found in a series of 24 doped samples, indicating defect-related color centers.

Possible means for oxygen vacancy identification:

- Electron Paramagnetic Resonance (ESR) and Electron-Nuclear Double Resonance (ENDOR);
- Transmission Electron Microscopy (TEM)/Energy Dispersion Spectrometry (EDS); and
- A pragmatic way: Oxygen Compensation by Post-Growing Annealing in Oxygen Rich Atmosphere.

TEM/EDS Study on PWO Crystals

TOPCON-002B scope, 200 kV, 10 uA, 5 to10 nm black spots identified JEOL JEM-2010 scope and Link ISIS EDS localized Stoichiometry Analysis

X-ray	Good PWC
Bad PWO	Bad PWO

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	$Point_1$	$Point_2$	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

Oxygen Vacancies Identified

BGO/PWO Quality Improvement

Nucl. Instr. and Meth. A302 (1991)

BGO damage recovery after 2.5 krad

Nucl. Instr. and Meth. A480 (2002) 470

PWO damage at different dose rate

Mass Produced PWO Crystals

All samples: EWRIAC < 1 m⁻¹ up to 400 rad/h Rigorous QC required to qualify CMS endcap crystals

LSO/LYSO Mass Production

CTI: LSO

Saint-Gobain LYSO

Additional Capability: SIPAT @ Sichuan, China

BGO, LSO & LYSO Samples

2.5 x 2.5 x 20 cm (18 X₀)

LSO/LYSO with PMT Readout

~10% FWHM resolution for ²²Na source (0.51 MeV) 1,200 p.e./MeV, 5/230 times of BGO/PWO

LSO/LYSO with APD Readout

L.O.: 1,500 p.e./MeV, 4/200 times of BGO/PWO Readout Noise: < 40 keV

Fermilab Colloquium, Ren-yuan Zhu, Caltech

γ-Rays Induced Damage

No damage in Photo-Luminescence

Transmittance recovery slow

γ-Rays Induced Transmittance Damage

300°C thermal annealing effective

LT damage: 8% @ 1 Mrad

γ-ray Induced Phosphorescence

춖

Phosphorescence peaked at 430 nm with decay time constant of 2.5 h observed

γ-ray Induced Readout Noise

Sample	L.Y.	F	$Q_{15 \text{ rad/h}}$	Q _{500 rad/h}	${f O}_{15 m rad/h}$	${f O}_{500~{ m rad/h}}$
ID	p.e./MeV	µA/rad/h	p.e.	p.e.	MeV	MeV
CPI	1,480	41	6.98x10 ⁴	2.33x10 ⁶	0.18	1.03
SG	1,580	42	7.15x10 ⁴	2.38x10 ⁶	0.17	0.97

 γ -ray induced PMT anode current can be converted to the photoelectron numbers (Q) integrated in 100 ns gate. Its statistical fluctuation contributes to the readout noise (σ): 0.2 & 1 MeV @ 15 & 500 rad/h.

Six LSO & LYSO Samples

2.5 x 2.5 x 20 cm (18 X₀) Bar

Three CTI LSO samples are provided by Chuck Melcher.

Three LYSO samples are purchased from Saint-

Gobain.

Statistical Comparison

Recent LYSO crystals are better than LSO

Sichuan Institute of Piezoelectric and Acousto-optic Technology (SIPAT)

China Electronics Technology Corporation (CETC) No. 26 Research Institute, www.sipat.com

SIPAT: Furnace & R&D Issues

- Raw material:
 - Lu₂O₃: 99.995%
 - SO₂: 99.999%
- Stoichiometry
- Temperature Gradient
- Growth Parameter Optimization
- Thermal Annealing
- Iridium Crucible Maintenance
- Power Supply Stability
- Chilled Water Stability

Started 2001 with Significant Progress in the last year

SIPAT Ø 60 x 250 mm LYSO Ingots

SIPAT Czochralski Furnaces

First SIPAT LYSO Sample for HEP

- Received in the middle of August with dimension of 25 x 25 x 200 mm and good visual inspection.
- It was first annealed at 300°C for 10 hours and with its initial optical and scintillation properties measured.
- Together with SG-L3, two samples were irradiated with integrated doses of 10, 10², 10³, 10⁴ 10⁵ and 10⁶.
- Samples were kept in dark after irradiation for 48 hours before optical and scintillation property measurement.
- Damage to transmittance, light output and uniformity are compared with samples from CTI, CPI and Saint-Gobain.

Initial Optical Properties

The cutoff of SG-L3 has ~5 nm

blue shift compared to SIAPT-

Excitation: emission @ 402 nm Emission: excitation @

358 nm

Light Output & Decay Kinetics

Compatible with the first batch large size samples from CTI and Saint-Gobain, and is 86% of the 'best'

Fermilab Colloquium, Ren-yuan Zhu, Caltech

γ-Ray Induced Radiation Damage

춖

Scintillation spectrum not affected by irradiation ~8% damage @ 420 nm after 106 rad irradiation

Comparison of L.O. Damage

All samples show consistent radiation resistance

10% - 15% loss by PMT

9% - 14% loss by APD

LSO/LYSO ECAL Performance

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 % /
$$\sqrt{E} \oplus 0.5$$
 % \oplus .001/E

Summary

- Because of total absorption, precision crystal calorimetry provides the best possible energy and position resolutions for electrons and photons as well as good e/γ identification and reconstruction efficiencies.
- Progress has been made in understanding crystal radiation damage and improving qualities of mass produced crystals.
- An LSO/LYSO crystal calorimeter will provide excellent energy resolution over a large dynamic range down to MeV level for future HEP and NP experiments.
- Development of cost-effective materials is crucial for the homogeneous HCAL concept.