

Large Size LSO:Ce and LYSO:Ce Crystal Scintillators for Future High Energy Physics and Nuclear Physics Experiments

Jianming Chen, Liyuan Zhang, <u>Ren-yuan Zhu</u>

California Institute of Technology

Why a Crystal Calorimeter

- Photons and electrons are fundamental particles for the SM and new physics.
- Performance of a crystal calorimeter is well understood:
 - The best possible energy resolution, good position and photon angular resolution;
 - Good e/photon identification and reconstruction efficiency;
 - Good missing energy resolutions;
 - Good jet energy resolution.
- Enhance the physics discovery potential.

Charmonium System Observed Through Inclusive Photons

Higgs Searches at LHC

Mass Produced Crystal Scintillators

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)		
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71		
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950		
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37		
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37		
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22		
Refracti I CO/I VCO is a unique any otal with 85										
Hygros LSO/LISO IS a UNIQUE CIYSTAI WITH										
Lumine high light output & fast decay time 40										
(at peak	<u>ign</u>	Uut	put				y (1111)			
Decay Time ^b (ns)	230	1300	35	630	300	50	40	60		
			6	0.9		10				
Light Yield ^{b,c} (%)	100	45	5.6	21	13	0.1	75	30		
			2.3	2.7		0.6				
d(LY)/dT ^b (%/ ºC)	~0	0.3	-0.6	-2	-1.6	-1.9	-0.3	-0.1		
				~0						
Experiment	Crystal	CLEO BaBar	KTeV	TAPS	L3	CMS	-	-		
	Ball	BELLE		(L*) (GEM)	BELLE PANDA?	PANDA?				
		BES III				(BIeV)				

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

From BABAR to Super BABAR

A Super *B* detector needs a new endcap, maybe also barrel Super *B* Factory Workshop – Honolulu April, 2005

Scint2005, Ren-yuan Zhu, Caltech

Sept 22, 2005

Scint2005, Ren-yuan Zhu, Caltech

LSO/LYSO Mass Production

CTI: LSO

BGO, LSO & LYSO Samples 0.3--1% Ce, 5--10% yttrium fraction Cube: 1.7 X1.7 x 1.7 cm (1.5 X₀) Bar: 2.5 x 2.5 x 20 cm (18 X₀)

Sept 22, 2005

Scint2005, Ren-yuan Zhu, Caltech

Experiment

- Without any thermal treatment, all samples went through initial measurement for optical and scintillation properties.
- Properties measured: transmittance, emission and excitation spectra, light output, decay kinetics and light response uniformity.
- Two LYSO long samples went through a series of γ–ray irradiations in steps under 2, 100 and 9k rad/h for 19/24, 19/24 and 22 hours respectively, followed by recovery.
- Light output was measured again for two long LYSO samples two days after ending γ–ray irradiations.

Excitation, Emission & Transmittance

Identical transmittance, emission & excitation spectra Part of emitted light may be self-absorbed in long samples

1.7 cm Cube

2.5 x 2.5 x 20 cm Bar

Sept 22, 2005

Scint2005, Ren-yuan Zhu, Caltech

¹³⁷Cs & ²²Na Pulse Height Spectra

Cube and bar samples have 8% and 10% FWHM resolution respectively for ¹³⁷Cs (0.66 MeV) and ²²Na source (0.51 MeV) CPI LYSO bar has double peak because of poor annealing

Light Output & Decay Time

LSO/LYSO Light yield: a factor of 6/100 of BGO/PWO Bar sample has ~50% of light of cube sample LSO/LYSO decay time: 42 ns compared to 300 ns of BGO

Emission Weighted Q.E.

Taking out PMT QE, LO of LSO/LYSO is 4 times BGO For Si PD and APD, QE is 59% and 75% respectively

LSO/LYSO with Si Readout

LSO/LYSO (not BGO) bars can be read in lab by using a single APD of 25 mm² (not Si PD) and 0.51 MeV $^{\rm 22}Na$ source

INVOLUTE OF TECHNOLO

SIC BGO: longitudinal optical uniformity

scint2005

No longitudinal variation in optical properties

CPI LYSO: longitudinal optical uniformity

No longitudinal variation in optical properties

Poor LT and TT may be caused by poor surface polishing

SG LYSO: longitudinal optical uniformity

scint2005

No longitudinal variation in optical properties.

TT approaches theoretical limit, LT shows an absorption

band peaked at 580 nm: no effect on emission

Scint2005, Ren-yuan Zhu, Caltech

CTI LSO: longitudinal optical uniformity

No longitudinal variation in optical properties Transverse transmittance approaches theoretical limit

Scint2005, Ren-yuan Zhu, Caltech

BGO Light Response Uniformity A slight negative slope for both end coupled to the PMT indicating a good longitudinal uniformity

scint2005

LYSO Light Response Uniformity

Uniformity depends on which end coupled to the PMT, indicating a not uniform light yield along crystal

LYSO Light Response Uniformity

Uniformity depends on which end coupled to the PMT, indicating a not uniform light yield along crystal

LSO Light Response Uniformity

Uniformity depends on which end coupled to the PMT, indicating a not uniform light yield along crystal

C. Melcher: LO in LSO is a function of Ce concentration B. Chai: LO in LYSO is a function of atomic fraction of Yttrium

Caltech y-ray Irradiation Facilities

Open 50 curie Co-60 provides 2 & 100 rad/h

Closed 2,000 curie Cs-137 provides 9k rad/h with 5% uniformity

LYSO Excitation/Emission

No variation in emission & excitation

Transmittance under 2 rad/h

An initial increase under 2 rad/h (need thermal annealing?) No further variation observed under 2 rad/h

Transmittance under 100 rad/h

Some indication on initial decrease under 100 rad/h No further variation observed under 100 rad/h

Transmittance (%)

Scint2005, Ren-yuan ∠hu, Caltech

LYSO Transmittance Damage

T @ 430 nm shows 6 and 3% increase under 2 rad/h, followed by 6 and 5% degradation under 9 krad/h for CPI and SG samples respectively

Phosphorescence peaked at 430 nm with decay time constant of 2.5 h observed

Phosphorescence peaked at 430 nm was observed

γ-ray Induced Readout Noise

Sample	L.Y.	F	Q _{15 rad/h}	Q _{500 rad/h}	$\sigma_{_{ m 15rad/h}}$	$\sigma_{_{500~ m rad/h}}$
ID	p.e./MeV	μ A/rad/h	p.e.	p.e.	MeV	MeV
CPI	1,480	41	6.98x10 ⁴	2.33x10 ⁶	0.18	1.03
SG	1,580	42	7.15x10 ⁴	2.38x10 ⁶	0.17	0.97

 γ -ray induced PMT anode current can be converted to the photoelectron numbers (Q) integrated in 100 ns gate. Its statistical fluctuation contributes to the readout noise (σ).

Light Output Degradation Damages in LRU and LO is small after γ -ray irradiations of 22 h at 9,000 rad/h

Radiation Damage in LYSO

Damage effect in LRU and LO is small after 22 h γ -ray irradiations at 9,000 rad/h: better than PWO

CMS PWO Resolution

 Energy resolution, σ(E)/E, better than L3 BGO and CMS PWO because of its high light output and thus low readout noise contribution:

2.0 %/ \sqrt{E} \oplus 0.5 % \oplus .002/E

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to the PWO crystals.

Summary

- Ce doped LSO & LYSO crystals have fast (42 ns) and high (4 X BGO) light output. The light output of 2.5 x 2.5 x 20 cm LSO and LYSO samples, excited by 0.51 MeV γ–ray, can be readout by single APD of 25 mm².
- LSO/LYSO has good radiation hardness. The radiation induced phosphorescence in 2.5 x 2.5 x 20 cm LYSO causes ~0.2 MeV noise @ 15 rad/h.
- An LSO/LYSO crystal calorimeter will provide the best possible energy resolution for future experiments, and will produce rich physics with precision electrons and photons