

1

An LSO/LYSO Crystal Calorimeter for the ILC

Ren-Yuan Zhu

California Institute of Technology

August 18, 2005

2005 ILC Workshop, Ren-yuan Zhu, Caltech

Why a Crystal Calorimeter

- Photons and electrons are fundamental particles in the SM and for new physics.
- Performance of a crystal calorimeter is well understood:
 - The best possible energy resolution, good position and photon angular resolution;
 - Good e/photon identification and reconstruction efficiency;
 - Good missing energy resolutions;
 - Good jet mass resolution.
- Physics discovery potential.

Physics in Crystal Calorimeters

Charmonium System Observed Through Inclusive Photons

Higgs Searches at LHC

Summary of Crystals for HEP

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)			
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71			
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950			
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37			
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37			
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22			
Refracti I CO/I VCO is a unique an otal with ⁸⁵											
Hygrost LSO/LISO IS a UNIQUE CIYSTAI WITH											
Lumine high light output & fast decay time 40											
(at peak	gin	Uut	put				y (1111)				
Decay Time ^b (ns)	230	1300	35	630	300	50	40	60			
			6	0.9		10					
Light Yield ^{b,c} (%)	100	45	5.6	21	13	0.1	75	30			
			2.3	2.7		0.6					
d(LY)/dT ^b (%/ ºC)	~0	0.3	-0.6	-2	-1.6	-1.9	-0.3	-0.1			
				~0							
Experiment	Crystal	CLEO BaBar	KTeV	TAPS	L3	CMS	-	-			
	Ball	BELLE		(L*) (GEM)	BELLE PANDA?	PANDA?					
		BES III				(BIeV)					

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

CHNOL

LSO/LYSO Mass Production

CTI: LSO

Saint-Gobain LYSO

Additional Capability: SIPAT @ Sichuan, China

2005 ILC Workshop, Snowmass, Ren-yuan Zhu, Caltech

Sichuan Institute of Piezoelectric and Acousto-optic Technology (SIPAT)

Φ80 x 70 **Large size LSO (Ce:Lu₂SiO₅) crystals are in production**

2005 ILC Workshop, Snowmass, Ren-yuan Zhu, Caltech

BGO, LSO & LYSO Samples

Cube: 1.7 X1.7 x 1.7 cm (1.5 X_0) Bar: 2.5 x 2.5 x 20 cm (18 X_0)

Excitation, Emission & Transmittance

Identical transmittance, emission & excitation spectra Part of emitted light may be self-absorbed in long samples

1.7 cm Cube

2.5 x 2.5 x 20 cm Bar

²⁰⁰⁵ ILC Workshop, Snowmass, Ren-yuan Zhu, Caltech

¹³⁷Cs & ²²Na Pulse Height Spectra

Cube and bar samples have 8% and 10% FWHM resolution respectively for ¹³⁷Cs (0.66 MeV) and ²²Na source (0.51 MeV) CPI LYSO bar has double peak because of poor annealing

Light Output & Decay Time

LSO/LYSO Light yield: a factor of 6/100 of BGO/PWO Bar sample has ~50% light of the cube sample LSO/LYSO decay time: 42 ns compared to 300 ns of BGO

Emission Weighted Q.E.

Taking out PMT QE, LO of LSO/LYSO is 4 times BGO For Si PD and APD, QE is 59% and 75% respectively

LSO/LYSO with Si Readout

LSO/LYSO (not BGO) bars can be read in lab by using a single APD of 25 mm² (not Si PD) and 0.51 MeV $^{\rm 22}Na$ source

LYSO Light Response Uniformity

Uniformity depends on which end coupled to the PMT, indicating a not uniform light yield along crystal

Possible Origin of Non Uniformity

C. Melcher: LO in LSO is a function of Ce concentration B. Chai: LO in LYSO is a function of atomic fraction of Yttrium

Radiation Damage in LYSO

Damage effect in LRU and LO is small after 22 h γ -ray irradiations at 9,000 rad/h: better than PWO

Radiation Induced Phosphorescence

Phosphorescence peaked at 430 nm with decay time constant of 2.5 h observed

γ-ray Induced Readout Noise

Sample	L.Y.	F	Q _{15 rad/h}	Q _{500 rad/h}	Ο _{15 rad/h}	$\sigma_{_{500~ m rad/h}}$
ID	p.e./MeV	µ A/rad/h	p.e.	p.e.	MeV	MeV
CPI	1,480	41	6.98x10 ⁴	2.33x10 ⁶	0.18	1.03
SG	1,580	42	7.15x10 ⁴	2.38x10 ⁶	0.17	0.97

 γ -ray induced PMT anode current can be converted to the photoelectron numbers (Q) integrated in 100 ns gate. Its statistical fluctuation contributes to the readout noise (σ).

2005 ILC Workshop, Snowmass, Ren-yuan Zhu, Caltech

L3 BGO Resolution

2005 ILC Workshop, Snowmass, Ren-yuan Zhu, Caltech

2

CMS PWO Resolution

2005 ILC Workshop, Snowmass, Ren-yuan Zhu, Caltech

 A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 $\%/\sqrt{E} \oplus 0.5 \% \oplus .002/E$

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to the CMS PWO ECAL.
- No degradation if ILC energy increases.

Single & Multi-Photons Physics

Physics in Crystal Calorimeter

SUSY Breaking with Gravitino

 $e^+e^- \to \tilde{G}\tilde{\chi}^0_1 \to \tilde{G}\tilde{G}\gamma$

L3 Jet Mass Resolution: Z->qq

 Measured jet mass resolution: 97%/√E Using tracker momentum for charged particles: 67%/√E • 30% improvement caused by the subtraction of MC calculated energy.

Best Jet Mass Resolution at LEP

Proceedings, Jeju ILC Workshop (2002)

Summary

- Ce doped LSO & LYSO crystals have fast (42 ns) and high (4 X BGO) light output. The light output of 2.5 x 2.5 x 20 cm LSO and LYSO samples, excited by 0.51 MeV γ–ray, can be readout by single APD of 25 mm².
- LSO/LYSO has good radiation hardness. The radiation induced phosphorescence in 2.5 x 2.5 x 20 cm LYSO causes ~1 MeV noise @ 500 rad/h.
- An LSO/LYSO crystal calorimeter will provide excellent energy resolution even the beam energy increases, and will produce rich physics with precision electrons and photons at the ILC.