

Performance of the Monitoring Light Source for the CMS Lead Tungstate Crystal Calorimeter

L. Zhang, D. Bailleux, A. Bornheim, K. Zhu, R.-Y. Zhu

California Institute of Technology

NSS04 N6-3, Liyuan Zhang, Caltech

Introduction

- A high resolution PWO crystal calorimeter is under construction by the CMS collaboration for LHC. The mass produced PWO crystals are radiation hard to high integrated dosage, but still suffer from a dose rate dependent damage as shown in induced absorption.
- Measuring variations of crystal transmittance and providing corrections of crystal light output, a light monitoring system plays a crucial role in maintaining PWO calorimeter energy resolution.
- A laser based light source and high level distribution system was designed and constructed at Caltech, and was installed and commissioned at CERN in the last three years.
- Performance and stability of this system in beam test is reported.

October 18, 2004

NSS04 N6-3, Liyuan Zhang, Caltech

PWO Radiation Damage

Damage and recovery: color center formation Dose rate dependent: cc creation and annihilation

Monitoring Wavelength Determination

IEEE Tran. Nucl. Sci. V 48 (2001) 372

$\Delta(T)$ versus $\Delta(LY)$

Sensitivity and Linearity

\rightarrow 440 nm is chosen for the best linearity

Continuous Monitoring in situ

Using 1% beam gaps in theLHC beam structure

The ECAL light monitoring system consists of laser source, optical switch based high-level distribution system and two level fanout system.

- Pulse width: FWHM <40ns to match PWO readout.
- Pulse jitter: <4ns/<2ns for long/short term.
- Pulse energy: 0.4 mJ/pulse to provide more than 100 GeV equivalent energy deposition in each crystal.
- Pulse energy instability: <10%.
- Pulse rate: 100Hz, the maximum rate allowed by DAQ.

Lasers Ready for 2004 Test Beam

 \Rightarrow In total more than 1200 hours of operation in 2003 beam test

Pulse Width and Timing Jitter Stability

Stability over 25 h

 \Rightarrow Very good performance.

 \Rightarrow In general 440nm/800nm better than 495nm/700nm.

⇒Pulse timing jitter is anticorrelated to the pulse energy variations !

Laser Monitoring Application

Tracking damage and recovery with laser light

Summary

- A laser based monitoring light source for CMS PWO crystal calorimeter was designed and constructed at Caltech, and installed and commissioned at CERN.
- An Acqiris DP210 card of 2 GS/s was added in 2004 to provide pulse energy and FWHM information for each pulse.
- The system performance at 440 and 800 nm reached or exceeded the original design specifications.
- Detailed studies are underway to understand the ultimate performance of the CMS ECAL monitoring and systematic effects.

Nucl. Instr. Meth. A 412 (1998) 223

Before/after beam irradiation: 10% variation in light output

