

Outline

- Generalities and motivations
- Physics benchmark
- ECAL construction
- Status of PWO crystal quality
- Key point for energy resolution: Light Monitoring

LHC Experimental Conditions

 $\begin{array}{c} \mbox{Machine Luminosity: } 10^{34}\,\mbox{cm}^{-2}\,\mbox{s}^{-2} \\ \sigma_{inel} = 100\,\mbox{mb} \quad \rightarrow \quad 10^9 \mbox{ events/s} \\ \sigma_{higgs} = 1\,\mbox{pb} \quad \rightarrow \quad 10^{-2} \mbox{ events/s} \\ 20 \mbox{ events/crossing} \rightarrow 1000 \mbox{ tracks} \\ 1 \mbox{ crossing/25ns} \\ \mbox{Neutrons: } 10^{17}\,\mbox{ n/cm}^2 \\ \mbox{ Gammas: } 10^7\,\mbox{Gy} \end{array}$

in 10 years

Extreme conditions for detectors

- Granularity (10⁵ ÷10⁷ channels)
- Speed of response
- DAQ + trigger $(10^9 \rightarrow 10^2 \text{ ev/s})$
- High radiation resistance

- 36 SMs (1.7k ch) in barrel, 4 Dees (3.5k ch) in endcaps.
- 62k crystal in barrel, 14k crystal in two endcaps. (11 m³)
- 2 APD's/crystal @barrel, 1 VPT/crystal @endcaps
- 1 monitoring fiber/crystal for *in situ* monitoring.
- Electronics: 0.25 µm ASIC.

Why Crystals?

- Excellent physics potential because of good energy resolution
- High detection efficiency for low energy e/ $\!\gamma$
- Structural compactness:
 - simple building blocks allowing easy mechanical assembly
 - hermetic coverage
 - fine transverse granularity
- Tower structure facilitates reconstruction
 - straightforward cluster algorithms for energy and position
 - electron/photon identification

BaBar CsI(TI) Resolution

Crystal Calorimetry at Low Energies

Good light yield of CsI(Tl) provides excellent energy resolution at B factory energies

L3 BGO Resolution

Crystal Calorimetry at High Energies

Contribution	"Radiative"+Intrinsic	Temperature	Calibration	Overall
Barrel	0.8%	0.5%	0.5%	1.07%
Endcaps	0.6%	0.5%	0.4%	0.88%

KTeV Csl Position Resolution

Sub mm position resolution is achievable. L3 BGO & CMS PWO: 0.3 mm at high energies.

Physics with Crystal ECAL

Charmonium System Observed Through Inclusive Photons

SUSY Breaking with Gravitino

 $e^+e^- \to \tilde{G}\tilde{\chi}^0_1 \to \tilde{G}\tilde{G}\gamma$

Physics with Crystal ECAL (Cont.)

The CDF event: 2 e + 2 γ + E_T^{miss} SM expectation (WW $\gamma\gamma$) ~ 10⁻⁶ (PR D59 1999) Possible SUSY explanation $q\overline{q} \rightarrow \widetilde{e}^+ \widetilde{e}^- \rightarrow ee \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \rightarrow ee \gamma\gamma \widetilde{G}\widetilde{G}$ L3 should be able to observe $e^+e^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \rightarrow \gamma \gamma \widetilde{G} \widetilde{G}$ Another possible channel $e^+e^- \rightarrow \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow \gamma \gamma \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$

Why Lead Tungstate (PWO)?

- Fast scintillation
- Small Xo and Rm
- Can be made radiation hard
- Relatively easy to grow
- Massive production capability

- Low light yield
- High refractive index
- LY dependance on T

PbWO₄

PWO Crystal is Compact

BaF₂

Csl

1.5 X₀ Cubic

CeF₃

BGO

Full Size Samples BaBar Csl(Tl): 16 X₀ L3 BGO: 22 X₀ CMS PWO(Y): 25 X₀

PWO Scintillation is Fast

Comparison: Crystals for HEP

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (ºC)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.2	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	560	420 310	300 220	480	560 420	420	440
Decay Time ^b (ns)	230	1300	35 6	630 0.9	300	50 10	40	60
Light Yield ^{b,c} (%)	100	45	5.6 2.3	21 2.7	9	0.1 0.6	75	30
d(LY)/dT ^b (%/ ºC)	~0	0.3	-0.6	-2 ~0	-1.6	-1.9	?	?
Experiment	Crystal Ball	CLEO BaBar BELLE	KTeV	TAPS (L*) (GEM)	L3 BELLE	CMS ALICE PANDA BTeV	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

NSTITUTE OF TECHNOLO

Yttrium Distribution in Crystal

The Glow Discharge Mass Spectroscopy (GDMS) was used to determine yttrium concentration in PWO crystals.

• A fit to the GDMS data extracts the yttrium segregation coefficient in PWO $K_{e} = 0.91 \pm 0.04$

PWO Crystal Quality Control

IOHANSSO

25 K crystals delivered

INFN/ENEA, Rome

CERN Labo 27 EP-CMA 5/28/99-13

- Automatic control of:
- Dimensions
- Transmission
- Light yield and uniformity

Avalanche Photo Diode (APD)

Delivery, test and screening are completed QC: ⁶⁰Co to 5 kGy in 2 h; 80°C aging one month

ECAL Module Assembly

Submodule: 10 crystals

Supermodule:1,700 crystals

Module: 4(5)00 crystals

SM Construction Assembly of Bare SM

- Modules assembled in Rome and CERN centers
- About 40 modules (10 SM) are completed

CMS PWO ECAL Resolution

Randomly Selected PWO Samples

BTCP: 20 from 1st batch (100) for CMS endcaps SIC: 20 from production batch for PrimEx

Experiment

- All crystals went through (1) thermal annealing at 200°C, (2) irradiations by γ–ray at 15, 400 and 9k rad/h until equilibrium and (3) recovery.
- Properties measured: Transmittance, emission and excitation spectrum, light output, decay kinetics and light response uniformity, as well as their degradation, radiation induced color center and emission weighted radiation induced absorption coefficients.
- Light output degradation was only measured at 15 rad/h because of limited light output: less than 8 p.e./MeV for BTCP samples.

Thermal Annealing

- Rigorous temperature control both in amplitude and slope:
 - From RT to 200°C: 200 minutes;
 - Maintain at 200°C: 240 minutes;
 - ➢ From 200°C to 25°C: 400 minutes.
- Crystals are kept in dark at RT (18°C) after annealing. The minimum time between annealing and the 1st measurement is 48 hours.

Transmittance and Birefringence

a axis: better L.T., but non-isotropic transverse T. Both approaching theoretical limit

BTCP: grown along the *a axis*

SIC: grown along the *c* axis

Light Output and Decay Kinetics

Both are fast, SIC samples have more light

Caltech y-ray Irradiation Facilities

Open 50 curie Co-60: 15, 100 and 400 rad/h

Closed 2,000 curie Cs-137: 9k rad/h at center, up to 36k rad/h

Photoluminescence

No variation in either excitation or emission spectrum No damage in scintillation mechanism

No Variation in Light Response Uniformity

NNO INTE OX IICHNOLO INTE OX IICHNOLO The response (y) along the axis was fit to a linear function

Light Output Degradation

5-15% and 15-30% light output loss under 15 and 500 rad/h Damage is dose rate dependent

Damage in Longitudinal Transmittance

Radiation induced absorption caused by CC formation

Comparison of Radiation Damage

SIC samples seem more radiation hard

Comparison of Transmittance Loss

SIC samples less diverse: Bridgman technology One BTCP sample shows LT increase under irradiation

Type III Sample: Transmittance Loss

Type III sample: preexisting intrinsic color center at 420 nm after 200 degree annealing, causing difficulty for monitoring with 440 nm light

Investigation on BTCP Samples (I)

Three samples cut to 5 pieces: 4.3 cm each: Type I: 2467, Type II: 2436, Type III: 2465

Investigation on BTCP Samples (II)

Anomaly is shown also at the Tail end (E and D)

Investigation on SIC Samples (I)

Two anomalous samples were cut to pieces

Crystal ID: NO.4-1-20

Dopant: Y/150 at ppm

The length of seed is 20.0 mm, thickness of 1, 2, 3, 4 is 5.0 mm. Dimension of AB, CD, EF, GH and IJ is: 25.0 x 25.0 x 44.3 mm³.

Dimension of B13a: 22.0 x 22.0 x 177.0 x 25.0 x 25.0 mm³.

Dimension of B13b: 22.0 x 22.0 x 50.0 x 23.0 x 23.0 mm³

Informal HEP Seminar at Caltech by Ren-yuan Zhu

Trace Analysis on SIC Samples

GDMS on SIC PWO(Y) Samples (ppmw)

by Shiva Technology West (November, 1999)

~		4-1-20-2/3		4-1-20-AB/EF/	IJ
Element	Seed/Tail 1	Seed/Tai 2	Seed/Tail 3	Seed/Middle/Tail 4	Tail 5
Na	0.2/0.8	0.2/2.3	0.4/0.8	0.2/0.8/1.9	0.8
Si	0.5/0.2	0.7/1.3	0.5/1.2	0.5/0.4/0.1	0.05
K	0.3/1.8	0.4/2.9	0.7/1.2	0.5/0.9/2.0	1.3
Ca	0.9/<0.05	0.6/0.08	0.12/0.15	0.8/0.6/0.2	0.15
Cu	0.04/0.2	0.04/0.4	0.3/0.35	0.08/0.1/0.54	0.23
As	0.15/0.35	0.1/0.6	0.5/0.5	0.14/0.16/0.6	0.54
Y	40/45	40/50	30/35	40/40/60	50 🥌
Nb	<0.05	<0.05	<0.05	<0.05	< 0.05
Мо	0.3/0.55	0.3/0.9	0.6/0.8	0.2/0.5/0.8	1.0
Sb	<0.05	<0.05	<0.05	<0.05	< 0.05
Ba	0.1/0.1	0.1/0.1	<0.05/0.06	0.3/0.15/0.07	0.1
La	<0.01	<0.01	<0.01	<0.01	<0.01
Eu	<0.05	<0.05	<0.05	<0.05	< 0.05
ΤC [†]	3.8/2.1	4.9/4.6	4.4/3.4	5.3/4.0/2.5	4.3

Impurity segregation:

Na, K, Cu, As, Mo: <1;

Ca, Ba: >1;

Y: slightly less, but close to 1.

> SIC samples are doped with Y only.

[†]: Total contamination, excluding Y.

April 20, 2004

THSITUTEON

Trace Analysis on BTCP Samples

GDMS on BTCP PWO(Y/Nb/La) Samples (ppmw)

by Shiva Technology (November, 2003)

Impurity segregation:

Element	2467 Seed/Tail	2436 Seed/Tail	2465 Seed/Middle/Tail
Na	0.95/0.98	2.5/5.2	3.8/3.4/5.2
Si	<0.05	<0.05	<0.05
K	0.36/0.58	0.45/0.90	0.71/0.56/1.6
Ca	2.4/1.8	1.3/0.9	1.7/1.3/1.2
Cu	<0.05	<0.05	<0.05
As	<0.05	<0.05	<0.05
Υ	71/74	94/120	98/83/100
Nb	0.06/0.11	0.07/<0.05	<0.05/0.27/0.26
Мо	0.2/0.23	0.33/0.38	0.37/0.37/0.41
Sb	<0.05	<0.05	<0.05
Ba	1.7/1.5	1.5/1.2	5.3/1.7/2.5
La	250/140	200/130	280/160/150 😭
Eu	0.6/0.5	0.8/1.4	1.1/0.53/0.3
ΤC [†]	6.4/5.7	7.0/10	13/7.9/11

Na, K, Nb, Mo: <1;

Ca, Ba, La: >1;

Y: slightly less, but close to 1.

BTCP PWO is triple doped with Y/Nb/La!!!

[†]: Total contamination, excluding Y, Nb and La.

Light Output & La Concentration

• The anticorrelation between the light output of PWO and its La concentration, may explain the low light yield of BTCP PWO.

• Further study is under way to clarify this issue.

Radiation Induced Color Center Density

Nucl. Instr. And Meth. A332 (1993) 442

RIAC or radiation induced color center density can be calculated precisely by using longitudinal transmittance (0.2%)

RIAC or
$$D_{Color-Center} = 1/LAL$$
;

n

$$LAL = \frac{\ell}{\ln\{[T(1-T_s)^2]/[\sqrt{4T_s^4 + T^2(1-T_s^2)^2} - 2T_s^2]\}}$$

where T is transmittance measured along crystal length ℓ and T_s

is the theoritical transmittance without internal absorption:

$$T_s = (1-R)^2 + R^2(1-R)^2 + \dots = (1-R)/(1+R), \text{ with}$$
$$R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}.$$

Emission Weighted RIAC

 $EWRIAC = \frac{\int Riac(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$

a good measure of rad. damage

Informal HEP Seminar at Caltech by Ren-yuan Zhu

EWRIAC (1/m) and Normalized r.m.s

L. T. Loss versus Initial L.T. @ 360 nm

No correlation

EWRIAC versus Initial L.T. @ 440 nm

No correlation

Recovery Speed and Time Constant

Recovery at 18°C in 160 days: two time constants Short recovery: BTCP: 36.0 h (27%), SIC: 43.6 h (33%)

Light Monitoring System

Initial calibration on test beam (as much crystals as possible) Physics calibration *In situ:* e⁺e⁻ pair (resonance) and e (E/p)

Monitoring crystal evolution by light injection system

LHC Beam Structure

CHNO10CT Continuous monitoring during data taking

STILL ISA

Monitoring Wavelength Determination

IEEE Tran. Nucl. Sci. V 48 (2001) 372

$\Delta(T)$ versus $\Delta(LY)$

Sensitivity and Linearity

\rightarrow 440 nm is chosen for the best linearity

Lasers at CERN for PWO Monitoring

Ext. Trigger

Pulse Timing

NET

Off-line laser system

April 20, 2004

Ti:Sapphire Laser with Two Wavelengths

April 20, 2004

Low Level Light Distribution

Long Term Stability: 0.1%

Monitoring Low Level Fiber Distribution

KINNAOTURE ON UE CHNOTO

Experiences in 2002 Beam Test

Informal HEP Seminar at Caltech by Ren-yuan Zhu

Summary (I)

- In the last seven years, CMS has taken a challanging project to build a precision crystal calorimeter at LHC.
- High quality PWO crystals and APDs are in mass production and detector construction is well under way.
- Radiation damage in PWO crystals is well understood. Variations of PWO crystal light output are monitored by a light monitoring system in situ.
- Important development has been achieved for precision crystal calorimetry in radiation environment. Looking forward to precision e/γ physics at LHC.

Summary (II)

- PWO samples from both BTCP and SIC have very good transmittance and fast light output. SIC samples produce 58% more light, which may be explained by 130-280 ppmw La doping in BTCP samples.
- Preexisting CC, causing light output increase under irradiation, is caused by contamination of mono-valent impurities.
- No correlations between radiation hardness and initial longitudinal transmittance was observed.
- Requiring degraded LAL>1 m, current massproduced PWO crystals are radiation hard enough for environment of up to a few hundreds rad/h --- a great achievement for HEP and MS.