

Gravitation Wave Detection with LIGO

Ren-yuan Zhu

California Institute of Technology

Gravitation Wave Workshop Beijing, China

March 2, 2004

GW Workshop, Beijing, China

- Gravitation waves
- LIGO: a terrestrial GW detector
- Detector performance and initial scientific result

Advanced LIGO Welcome Chinese colleagues

Gravitational Waves

LIGO

Credit: National Center for Supercomputing Applications (NCSA)

March 2, 2004

LIGO

Gravitational Radiation

Propagating Waves of Space-Time Curvature

inspiral of compact stellar-mass binary objects (black holes, neutron stars)

LIGO

LIGO Evidence for Gravitational Waves

Physical Contraction of the Church of the Ch

ystem – Hulse Emission of gravitational waves

Neutron Binary System • separated by 10^6 miles • $m_1 = 1.4m_{\odot}$; $m_2 = 1.36m_{\odot}$; $\varepsilon = 0.617$

Prediction from general relativity

- spiral in by 3 mm/orbit
- rate of change orbital period

March 2, 2004

Allegro, USA

ALLEGRO

MiniGRAIL The Netherlands

MINIGRAIL GEO AURIGA **EXPLORER** NAUTILUS

Explorer Switzerland

EXPLOR

Niobe Australia

Gravitational Wave Detectors

Auriga, Italy

Nautilus, Italy

AIGO NIOBE

Interferometers Based on Lasers

Gravitational Wave Astrophysical Source

Terrestrial detectors International Network

Detectors in space LISA

LIGO, VIRGO, GEO, TAMA ... International network

LIGO Astrophysics Sources by Frequency

- EM waves are studied over ~20 orders of magnitude
 - (ULF radio -> HE γ-rays)
- Gravitational
 Waves over ~10 orders of magnitude
 - (terrestrial + space)

LIGO A New Window on the Universe

Gravitational wave observations will provide a new way to view the dynamics of the Universe

March 2, 2004

Beijing GW Detection Workshop, Ren-yuan Zhu, Caltech

LIGO Nature of Gravitational Radiation

General Relativity predicts :

- Transverse space-time distortions, freely propagating at speed of light *Mass of graviton = 0*
- Stretches and squashes space between "test masses" strain

 $h = \Delta L/L$

•Conservation laws:

•cons of energy ⇒ no monopole radiation
•cons of momentum ⇒ no dipole radiation
•quadrupole wave (spin 2) ⇒ two polarizations

plus (\oplus) and cross (\otimes)

Spin of graviton = 2

Contrast with EM dipole radiation: $\hat{x} ((\longrightarrow))$ \hat{y} \hat{f}

LIGO Interferometric Detection of GWs

LIGO Detecting a Passing Wave

Free masses

March 2, 2004

Interferometer Concept

 Laser used to measure relative lengths of two orthogonal arms

LIGO

- Arms in LIGO are 4km
- Measure difference in length to one part in 10²¹ or 10⁻¹⁸ meters

LIGO

LIGO Optical Scheme

Michelson interferometer with Fabry-Perot arm cavities

Beijing GW Detection Workshop, Ren-yuan Zhu, Caltech

What Limits Sensitivity?

 Seismic noise & vibration limit at low frequencies

LIGO

- Atomic vibrations (Thermal Noise) inside components limit at mid frequencies
- Quantum nature of light (Shot Noise) limits at high frequencies
- Myriad details of the lasers, electronics, etc., can make problems above these levels

Beijing GW Detection Workshop, Ren-yuan Zhu, Caltech

LIGO Noise-limited Sensitivity

FORNIAT

LIGO Laboratory Sites

Interferometers are aligned along the great circle connecting the sites

Hanford, WA (4 km (H1) + 2 km (H2))

LIGO

LIGO Observatories

GEODETIC DATA (WGS84) X arm: S72.2836•W h: -6.574 m *d*: N30•33'46.419531" Y arm: S17.7164•E λ: W90°46'27.265294"

Livingston Observatory Louisiana One interferometer (4km)

Hanford Observatory Washington Two interferometers (4 km and 2 km arms)

GEODETIC DATA (WGS84) h: 142.555 m φ: N46•27'18.527841" λ: W119•24'27.565681"

X arm: N35.9993•W Y arm: S54.0007•W

March 2, 2004

LIGO

LIGO Beam Tube

1.2 m diameter - 3mm stainless 50 km of weld NO LEAKS !!

LIGO beam tube under construction in January 1998

- 65 ft spiral welded sections
- girth welded in portable clean room in the field

LIGO

LIGO Vacuum Equipment

Seismic Isolation System

LIGO

Isolation Performance

Tubular coil springs with internal damping, layered between steel reaction masses

A LIGO Quartz Mirror

Substrates: SiO₂

LIGO

25 cm Diameter 10 cm thick Homogeneity < 5 x 10⁻⁷ Internal mode Q>2x10⁶

Polishing Surface: Uniformity < 1 nm rms Radii of curvature matched < 3% Coating Scatter< 50 ppm Absorption < 0.5 ppm Uniformity <10⁻³

LIGO Core Optics Metrology Current state of the art: 0.2 nm repeatability

LIGO data (1.2 nm rms)

CSIRO data (1.1 nm rms)

FORNIA

> Best mirrors are λ /6000 over the central 8 cm diameter

Core Optics

installation and alignment

LIGO

LIGO Commissioning and Science Runs

•August 23 – September 9, 2002: 408 hrs (17 days).

- •H1 (4km): duty cycle 57.6% ; Total Locked time: 235 hrs
- •H2 (2km): duty cycle 73.1% ; Total Locked time: 298 hrs
- •L1 (4km): duty cycle 41.7% ; Total Locked time: 170 hrs

•Double coincidences:

- •L1 && H1 : duty cycle 28.4%; Total coincident time: 116 hrs
- •L1 && H2 : duty cycle 32.1%; Total coincident time: 131 hrs
- •H1 && H2 : duty cycle 46.1%; Total coincident time: 188 hrs

•Triple Coincidence: L1, H1, and H2 : duty cycle 23.4% ;

•Total coincident time: 95.7 hrs

LIGO Astrophysical Sources of GW

"chirps"

- Compact binary inspiral:
 - NS-NS waveforms are well described
 - BH-BH need better waveforms
 - search technique: matched templates
- Supernovae / GRBs: "bursts"
 - burst signals in coincidence with signals in electromagnetic radiation
 - Challenge to search for untriggered bursts
- Pulsars in our galaxy: "periodic signals"
 - search for observed neutron stars (frequency, Doppler shift)
 - all sky search (computing challenge)
 - r-modes
- Cosmological Signals

with frequency f.

Analog from cosmic microwave background --WMAP 2003

"stochastic background"

LIGO Frequency-Time Characteristics

LIGO 1. Compact binary sources Coalescence inspirals

Detectability of coalescing binary sources during S1 (for optimal location & orientation relative to antenna pattern)

Beijing GW Detection Workshop, Ren-yuan Zhu, Caltech

3. Burst sources

Sensitivity of LIGO to burst sources

GW's from asymmetric supernova collapse

NNSTITUTE OF THE H

4. Stochastic GW Background

Sources

LIGO

- Early universe sources (inflation, cosmic strings, etc) produce very weak, non-thermal (eg, power-law spectrum), unpolarized, isotropic, incoherent (stochastic) background spectrum
- Contemporary sources (unresolved SN & inspiral sources) produce power-law spectrum

Analog from cosmic microwave background -- WMAP 2003

$$\int_{0}^{\infty} d(\ln f) \ \Omega_{GW}(f) = \frac{\rho_{GW}}{\rho_{critical}}$$

The integral of [1/f•Ω_{GW}(f)] over all frequencies corresponds to the fractional energy density in gravitational waves in the Universe

LIGO Data Analysis

- LIGO is a broad-band detector, measures waveforms.
- The experimentalist thinks not in terms of astrophysical sources, but in terms of waveform morphologies.
- Specific astrophysical sources suggest specific waveforms, but we don't want to miss the unexpected!
- Four different waveform morphologies being considered:
 - Bursts (of limited duration), for which we have models (chirps, ringdowns)
 - Bursts, for which we have no reliable models (supernovas, ...)
 - Continuous waves, narrow bandwidth periodic (pulsars)
 - Continuous waves, broad bandwidth stochastic (BB background)
- Each requires radically different data analysis techniques.
- Algorithms and implementation are under development.
- Marching into the unknown look out for surprises!

LIGO

Summary of S1

 The first upper limits results have been obtained using the LIGO interferometers in coincidence. These have resulted in four *methodology* papers:

Papers submitted to *Physical Review D*:

- * "Analysis of LIGO data for gravitational waves from binary neutron stars", gr-qc/0308069
- [‡] "Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors", gr-qc/0308050
- *[‡] "First upper limits on gravitational wave bursts from LIGO"*
- # "Analysis of First LIGO Science Data for Stochastic Gravitational Waves
- · A paper describing the instruments has also been written.
 - * "Detector Description and Performance for the First Coincidence Observations between LIGO and GEO", gr-qc/0308043, accepted for publication by Nuclear Instruments and Methods

LIGO

Papers in Publication LIGO

1. gr-qc/0312088 [abs, ps, pdf, other] :

Title: Analysis of First LIGO Science Data for Stochastic Gravitational Waves Authors: LIGO Scientific Collaboration: B. Abbott, et al Comments: 26 pages, 17 figures

2. gr-qc/0312056 [abs, ps, pdf, other] :

Title: First upper limits from LIGO on gravitational wave bursts Authors: LIGO Scientific Collaboration: B. Abbott, et al Comments: 21 pages, 15 figures, for submission to Phys Rev D

3. gr-qc/0308069 [abs, ps, pdf, other] :

Title: Analysis of LIGO data for gravitational waves from binary neutron stars Authors: The LIGO Scientific Collaboration: B.Abbott, et al Comments: 17 pages, 9 figures

4. gr-qc/0308050 [abs, ps, pdf, other] :

Title: Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors Authors: The LIGO Scientific Collaboration: B.Abbott, et al Comments: 16 pages,8 figures

5. gr-qc/0308043 [abs, ps, pdf, other] :

Title: Detector Description and Performance for the First Coincidence Observations between LIGO and GEO Authors: The LIGO Scientific Collaboration: B. Abbott, et al. Comments: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial changes

Analysis of First LIGO Science Data for Stochastic Gravitational Waves

B. Abbott, ¹³ R. Abbott, ¹⁶ R. Adhikari, ¹⁴ A. Ageev, ^{21,28} B. Allen, ⁴⁰ R. Amin, ³⁵ S. B. Anderson, ¹³ W. G. Anderson.³⁰ M. Arava,¹³ H. Armandula,¹³ F. Asiri,¹³,⁴ P. Aufmuth.³² C. Aulbert,¹ S. Babak,⁷ R. Balasubramanian,⁷ S. Ballmer,¹⁴ B. C. Barish.¹³ D. Barker,¹⁵ C. Barker-Patton,¹⁵ M. Barnes,¹³ B. Barr,⁹⁶ M. A. Barton,¹³ K. Bayer,¹⁴ R. Beausoleil,²⁷,¹⁰ K. Belczynski,²⁴ R. Bennett,³⁶,¹⁷ S. J. Berukoff,¹,¹⁰ J. Betzwieser,¹⁴ B. Bhawal,¹³ I. A. Bilenko,²¹ G. Billingsley,¹³ E. Black,¹³ K. Blackburn,¹⁵ B. Bland-Weaver,¹⁶ B. Bochner,¹⁴,¹⁶ L. Bogue,¹⁵ R. Bork,¹⁵ S. Bose,⁴¹ P. R. Brady,⁴⁰ V. B. Braginsky,²¹ J. E. Brau,³⁸ D. A. Brown,⁴⁰ S. Brozek,³²,⁴⁰ Leggue, "A. Doff," S. Josse, "F. A. Dawy," V. Draguisty," J. E. Draf, "D. A. Drown," S. Droves, A. Builington, "A. Buonamo," R. Burgers, "I. D. Bucky, W. E. Butler, "B. L. Byer," L. Cadonati, G. Cagnoli, "S. J. B. Camp," C. A. Cantley, "S. L. Cadenas," W. E. Butler, "B. L. Byer, "L. Cadonati, A. Chandler, "J. Chapsky, "B. P. Charthour," S. Chatterj, "Y. Chae, "V. Chickarman," J. Chastion, "D. Chart, "D. Chae, N. Christensen,⁸ D. Churches,⁷ C. Colacino,^{52,2} R. Coldwell,³⁵ M. Coles,¹⁶, D. Cook,¹⁵ T. Corbitt,¹⁴ D. Coyne,¹³ J. D. E. Creighton,⁴⁰ T. D. Creighton,¹³ D. R. M. Crooks,³⁶ P. Csatorday,¹⁴ B. J. Cusack,³ C. Cutler,¹ E. D'Ambrosio,¹³ K. Danzmann,^{32,2,20} R. Davies,⁷ E. Daw,¹⁷,¹ D. DeBra,²⁷ T. Delker,³⁵,¹ R. DeSalvo,¹³ S. Dhurandhar,¹² M. Díaz,³⁰ H. Ding,¹³ R. W. P. Drever,⁴ R. J. Dupuis,³⁶ C. Ebeling,⁸ J. Edlund,¹³ P. Ehrens,¹³ E. J. Elliffe,³⁶ T. Etzel,¹³ M. Evans,¹³ T. Evans,¹⁶ C. Fallnich,³² D. Farnham,¹³ M. M. Fejer,²⁷ M. Fine,¹³ L. S. Finn.²⁹ É. Flanagan.⁹ A. Freise.²⁴ B. Frev.³⁸ P. Fritschel.¹⁴ V. Frolov.¹⁶ M. Fvffe.¹⁶ K. S. Ganezer.⁵ J. A. Giaime, 17 A. Gillespie, 13, T K. Goda, 14 G. González, 17 S. Goßler, 32 P. Grandelément, 24 A. Grant, 36 C, Grav,¹⁵ A, M, Gretarsson,¹⁶ D, Grimmett,¹³ H, Grote,² S, Grunewald,¹ M, Guenther,¹⁵ E, Gustafson,²⁷,⁴⁷ R. Gustafson,³⁷ W. O. Hamilton,¹⁷ M. Hammond,¹⁶ J. Hanson,¹⁶ C. Hardham,²⁷ G. Harry,¹⁴ A. Hartunian,¹³ J. Heefner,¹³ Y. Hefetz,¹⁴ G. Heinzel,² I. S. Heng,³² M. Hennessy,²⁷ N. Hepler,²⁹ A. Heptonstall,³⁶ M. Heurs,³² M. Hewitson,³⁶ N. Hindman,¹⁵ P. Hoang,¹³ J. Hough,³⁶ M. Hrynevych,¹³,¹⁵ W. Hua,²⁷ R. Ingley,³⁴ M. Ito,³⁸ Y. Itoh,¹ A. Ivanov,¹³ O. Jennrich,³⁶,¹⁶ W. W. Johnson,¹⁷ W. Johnson,³⁰ L. Jones,¹³ D. Junewirth,¹³,¹⁶ V. Kalogera,²⁴ E. Katsavounidis,¹⁴ K. Kawabe,^{20,2} S. Kawamura,²³ W. Kells,¹³ J. Kern.¹⁶ A. Khan.¹⁶ S. Killbourn,³⁶ C. J. Killow,³⁶ C. Kim,²⁴ C. King,¹³ P. King,¹³ S. Klimenko,³⁵ P. Kloevekorn,² S. Koranda,⁴⁰ K. Kötter, ³² J. Kovalik, ¹⁶ D. Kozak, ¹³ B. Krishnan,¹ M. Landry,¹⁵ J. Langdale,¹⁶ B. Lantz,²⁷ R. Lawrence,¹⁴ 40 institutions from A. Lazzarini,¹³ M. Lei,¹³ V. Leonhardt,⁵² I. Leonor,⁵⁸ K. Libbrecht,¹³ P. Lindquist,¹³ S. Liu,¹³ J. Logan,¹³,¹⁵ M. Lormand,¹⁶ M. Lubinski,¹⁵ H. Lück,⁵²,² T. T. Lyons,¹⁵,¹⁵ B. Machenschalk,¹ M. MacInnis,¹⁴ M. Mageewaran,¹ K. Mailand, ¹³ W. Majid, ¹³ M. Malee, ²³ F. Mann, ¹³ A. Marin, ¹⁴ S. Marka, ¹³ E. Marca, ¹³ J. Mason, ¹³ K. Mason, ¹⁴ O. Marin, ¹⁴ S. Marka, ¹⁴ D. E. Marca, ¹³ J. Mason, ¹⁵ N. Mavilvala, ¹⁴ R. McCarthy, ¹⁵ D. E. McClelland,³ M. McHugh, ¹⁵ P. McNamara, ³⁶, ¹⁷G. Mendell, ¹⁵S. Meshkov, ¹³C. Messenger, ³⁴V. P. Mitrofanov, ²¹G. Mitselmakher, ³⁵R. Mittleman, ¹⁴O. Miyakawa, ¹³S. Miyoki, ¹³, ¹⁵S. Mohanty, ¹⁴G. Moreno, ¹⁵K. Mossavi, ²B. Mours, ¹³, ¹⁵G. G. Mueller, ³⁵ S. Mukherjee, ¹, ⁶ J. Myers, ¹⁵ S. Nagano, ² T. Nash, ¹⁰, ⁹ H. Naundorf, ¹ R. Nayak, ¹² G. Newton, ³ F. Nocera, ¹³ P. Nutzman, ²⁴ T. Olson, ²⁵ B. O'Reilly, ¹⁶ D. J. Ottaway, ¹⁴ A. Ottewill, ⁴⁰, ⁶ D. Ouimette, ¹³, ⁶ H. Overmier, ¹⁶ B. J. Owen,²⁹ M. A. Papa,¹ C. Parameswariah, ¹⁶ V. Parameswariah, ¹⁵ M. Pedraza, ¹³ S. Penn, ¹¹ M. Pitkin ³⁶ M. Plissi ³⁶ M. Pratt.¹⁴ V. Ouetschke, ³² F. Rasb.¹⁵ H. Radkins.¹⁵ R. Rahkola.³⁸ M. Rakhmanov.³⁶ S. R. Rao, ¹³ D. Redding, ¹³, ¹ M. W. Regehr, ¹³, ¹ T. Regimbau, ¹⁴ K. T. Reilly, ¹³ K. Reithmaier, ¹³ D. H. Reitze, ³⁶ S. Richman,¹⁴,¹⁶ R. Riesen,¹⁶ K. Riles,³⁷ A. Rizzi,¹⁶,¹⁶ D. I. Robertson,³⁶ N. A. Robertson,^{36,27} L. Robison,¹³ S. Roddy,¹⁶ J. Rollins,¹⁴ J. D. Romano,³⁰,⁸⁰ J. Romie,¹³ H. Rong,³⁵,⁴⁰ D. Rose,¹³ E. Rotthoff,²⁹ S. Rowan,³⁶ A. Rüdiger, 20, 2 P. Russell, ¹³ K. Ryan, ¹⁵ I. Salzman, ¹⁵ G. H. Sanders, ¹⁸ V. Sannibale, ¹³ B. Sathyaprakash, ⁷ P. R. Saulson,²⁸ R. Savage,¹⁵ A. Sazonov,³⁵ R. Schilling,^{20, 2} K. Schlaufman,²⁹ V. Schmidt,¹³,⁵⁶ R. Schofield,³⁸ M. Schwarpel, ³⁷. B. F. Schutz, ^{1,7} P. Schwinberg, ¹⁵ S. M. Scott, ³ A. C. Sselle, ³ B. Sear, ¹⁵ S. Seel, ¹³ A. S. Sengupta, ¹² C. A. Shapiro, ²⁹ P. Shawhan, ¹³ D. H. Shoemaker, ¹⁴ Q. Z. Shu, ³⁵, ¹⁶ A. Sibley, ¹⁴ X. Siemens, ⁴⁴ L. Sievers, ¹³, ¹⁶ D. Sigg, ¹⁵ A. M. Sintes, ^{1, 33} K. Skeldon, ³⁶ J. R. Smith, ² M. Smith, ¹⁴ M. R. Smith, ¹³ P. Sneddon, ³⁶ R. Spero, ¹³, ^B G. Stapfer, ¹⁶ K. A. Strain, ³⁶ D. Strom, ³⁸ A. Stuver, ²⁹ T. Summerscales, ²⁹ M. C. Sumner, ¹³ P. J. Sutton, 29, 2 J. Sylvestre, 13 A. Takamori, 13 D. B. Tanner, 36 H. Tariq, 13 I. Taylor, 7 R. Taylor, 13 K. S. Thorne, M. Tibbits,²⁰ S. Tilav.¹³,¹⁰ M. Tinto,⁴,¹ K. V. Tokmakov,²¹ C. Torres,³⁰ C. Torrie,^{13,36} S. Traeger,³²,¹¹ G. Traylor,¹⁶ W. Tyler,¹³ D. Ugolini,³¹ M. Vallisneri,⁶ M. van Putten,¹⁴ S. Vass,¹³ A. Vecchio,³⁴ C. Vorvick,¹⁵ S. P. Vyachanin,²¹ L. Wallace,¹³ H. Walther,²⁰ H. Ward,³⁶ B. Ware,¹³,¹⁶ K. Watts,¹⁶ D. Webber,¹³ A. Weidner, ^{30,2} U. Weiland, ³² A. Weistein, ¹³ R. Weiss, ¹⁴ H. Weiling, ³² L. Wen, ¹⁵ S. Wen, ¹⁷ J. T. Whelan, ¹⁹ S. E. Whitcomb, ¹³ B. F. Whiting, ³⁵ P. A. Willems, ¹³ P. R. Williams, ¹⁴ R. Williams, ¹⁴ B. Williams, ¹ B. Williams, ¹⁴ R. Williams, ¹⁴ R. Williams, ¹⁵ P. A. Willow, ¹³ S. Wen, ¹⁶ S. Weilaw, ¹⁵ S. Weilaw, ¹ B. J. Winium.²⁹,⁴ W. Winkler.^{20,2} S. Wise.³⁵ A. G. Wiseman.⁴⁰ G. Woan.³⁶ R. Wooley.¹⁶ J. Worden.¹⁸ I. Yakushin, ¹⁶ H. Yamamoto, ¹³ S. Yoshida, ²⁶ I. Zawischa, ³², ¹ L. Zhang, ¹³ N. Zotov, ¹⁸ M. Zucker, ¹⁶ and J. Zweizig¹³ (The LIGO Scientific Collaboration, http://www.ligo.org) ¹Albert-Einstein-Institut, Maz-Planck-Institut für Gravitationsphysik, D-14476 Golm, Germany ^aAlbert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany ³Australian National University, Canberra, 0200, Australia ⁴California Institute of Technology, Pasadena, CA 91125, USA ⁵California State University Dominguez Hills, Carson, CA 90747, USA ⁶Caltech-CaRT, Pasadena, CA 91125, USA ⁷Cardiff University, Cardiff, CF2 sYB, United Kingdom ^dCardefor College, Northfield, MN 55057, USA ²Cornell University, Ithaca, NY 14855, USA ¹⁹Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
¹¹Hobart and William Smith Colleges, Geneva, NY 14456, USA ¹³Inter-University Center for Astronomy and Astrophysics, Pune - (11007, India ¹³LIGO - California Institute of Technology, Pasadena, CA 91125, USA ¹⁴LIGO - Massachusetts Institute of Technology, Cambridge, MA 02159, USA ¹³LIGO Hanford Observatory, Richland, WA 99352, USA ¹⁴LIGO Livingston Observatory, Livingston, LA 70754, USA ¹⁷Louisiana State University, Baton Rouge, LA 70803, USA ¹⁸Louisiana Tech University, Ruston, LA 71272, USA ¹⁹Loyola University, New Orleans, LA 70118, USA ⁵⁰Maz Planck Institut für Quantenoptik, D-85748, Garching, Germany ²¹ Moscow State University, Moscow, 119992, Russia ²²NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA ⁸³National Astronomical Observatory of Japan, Tokyo 181-8588, Japan ⁸⁴Northwestern University, Evanston, IL 60208, USA ²⁵Salish Kootenai College, Pablo, MT 59855, USA ²⁸Southeastern Louisiana University, Hammond, LA 70402, USA ³⁷ Stanford University, Stanford, CA 94305, USA
 ²⁸ Syracuse University, Syracuse, NY 13244, USA ⁵⁰The Pennsylvania State University, University Park, PA 16802, USA ¹³ The University of Tesas at Boomswille and Tesas Southmost College, Boomswille, TX 78520, USA ¹⁴ Trinity University, San Autono, TX 78212, USA ¹⁴ Universitä Annonee, D. Solför Hannover, Germany

⁵³Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain ⁵⁴University of Birmingham, Birmingham, B15 2TT, United Kingdon ³⁵University of Florida, Gainsville, FL 32611, USA ⁵⁰University of Glasgou, Glasgou, Gl2 SQQ, United Kingdom ⁵⁷University of Michigan, Ann Arbor, MI 48109, USA ³⁶ University of Oregon, Eugene, OR 97409, USA
 ³⁹ University of Rochester, Rochester, NY 14627, USA
 ⁴⁰ University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA ⁴² Washington State University, Pullman, WA 99164, USA

March 2, 2004

Beijing GW Detection Workshop, Ren-yuan Zhu, Caltech

300 physicists

and engineers:

eight countries

Seismic Environment at LLO

- Spiky impulsive seismic noise in 1-3 Hz band
 - Related to human activity mostly lumber industry
 - Dominant frequencies accidentally coincide with stack resonances
 - Impedes interferometer locking during weekdays
- Large & variable microseism
 - Ocean waves excite double frequency (DF) surface waves on land
 - Fraction to several microns RMS; frequency: ~ 0.15 0.25 Hz
 - Wavelength ~ kilometers → L1 arm length change several microns
- Strategy for recovering full-time duty at LLO
 - Active Hydraulic External Pre-Isolator system
 - 6 D.O.F active stabilization of seismic supports (External Pre-Isolator)
 - Prototype demonstrated at Stanford and MIT
 - Now in full production for January installation start at LLO

LIGO

LIGO Daily Variability of Seismic Noise

RMS motion in 1-3 Hz band

Beijing GW Detection Workshop, Ren-yuan Zhu, Caltech

LIGO Plans schedule

1996	Construction Underway (mostly civil)
1997	Facility Construction (vacuum system)
1998	Interferometer Construction (complete facilities)
1999	Construction Complete (interferometers in vacuum)
2000	Detector Installation (commissioning subsystems)
2001	Commission Interferometers (first coincidences)
2002	Sensitivity studies (initiate LIGO I Science Run)
2003+	LIGO I data run (one year integrated data at $h \sim 10^{-21}$)
2007+	Begin 'advanced' LIGO installation

Advanced LIGO Reach

The scientific reach of a few hours of advanced LIGO is comparable to 1 year of initial LIGO

March 2, 2004

LIGO

Initial and Advanced LIGO

Factor 10 better amplitude sensitivity

LIGO

- $(Reach)^3 = rate$
- Factor 4 lower frequency₁₀-22 bound

Hz

 $S_{h}^{1/2}$

- NS Binaries: for three interferometers,
 - Initial LIGO: ~20 Mpc
 - Adv LIGO: ~350 Mpc
- **BH** Binaries:
 - Initial LIGO: 10 M_o, 100 Mpc
 - Adv LIGO : 50 M_o, z=2
- Stochastic background:
 - Initial LIGO: ~3e-6
 - Adv LIGO ~3e-9

Projected Advanced LIGO

 Advanced LIGO's Fabry-Perot Michelson Interferometer is flexible – can tailor to what we learn before and after we bring it on line, to the limits of this topology

LIGO

Design features

1891 INSTITUTE OF THE H

0100

LIGO

LIGO Test Masses / Core Optics Full-size Advanced LIGO Sapphire Substrate

Suspensions

Prototype triple pendulum suspension

March 2, 2004

Beijing GW Detection Works

Advanced LIGO R&D

Laser:

LIGO

- selected baseline power head design,
- Prototyping: observe >1/2 final power goal in ½ of system.
- Intensity stabilization to requirements (> 40Hz), within factor of 5 (10 Hz)

• Substrates:

- Received full-size 40 kg, 32 cm diameter sapphire substrates
- Found mechanical losses in these substrates to meet requirements
- Characterized absorption in these substrates, supported successful annealing techniques on smaller pieces to reduce absorption
- New high Q measurements of small (200e6) and LIGO-sized (120e6) of fused silica; annealing on small pieces to reduce mechanical losses

Coatings:

- Refined models for coating thermal noise
- Observed coating thermal noise in two experiments, consistent with theory
- Measured and supported measurements of mechanical losses on trial coatings
- Developed strategy for coating development, put plan into motion

LIGO Organization & Support

Summary

- To study gravitation wave astronomy, a laser based interferometer technology has been developed in the last decade. As of today, LIGO is approaching its initial scientific design goal and is publishing scientific result.
- Advanced LIGO is planned to expand the observation reach by a factor of ten, or the volume by 1,000.
- Similar to ICFA for high energy physics, a world wide scientific collaboration on gravitation wave detection (GWIC) has been established.
- A Chinese gravitation wave observatory will play an important role in this coordinated international effort.
- Prof. B. Barish, Director of LIGO, would like to express his warm welcome to our Chinese colleagues. He will support a bi-lateral collaboration between US and China in this effort, and will start this collaboration with a US NSF supported visitors program.

LIGO