Csl(TI) Calibration and Monitoring for Crystal Calorimetry

Properties of Crystal Scintillators

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.2	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	560	420 310	300 220	480	560 420	420	440
Decay Time ^b (ns)	230	1300	35 6	630 0.9	300	50 10	40	60
Light Yield ^{b,c} (%)	100	45	5.6 2.3	21 2.7	9	0.1 0.6	75	30
d(LY)/dT ^b (%/ ºC)	~0	0.3	-0.6	-2 ~0	-1.6	-1.9	?	?
Experiment	Crystal Ball	CLEO BaBar BELLE	KTeV	(L*) (GEM) TAPS	L3 BELLE	CMS ALICE BTeV	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

Charmonium System Observed Through Inclusive Photons

Charmed Meson in Z Decay

 $\chi_{c1} \rightarrow J/\psi \gamma$

Higgs Search at LHC

 $H \rightarrow \gamma \gamma$

SUSY Breaking with Gravitino $e^+e^- \rightarrow \tilde{G}\tilde{\chi}^0_1 \rightarrow \tilde{G}\tilde{G}\gamma$

New Physics with Crystal Calorimetry (cont.)

CLEO CsI(TI) Calibration

NSTITUTE NOUL ISOI With Bhabha Electrons & Photons from π^{0} 's

Brian Heltsley (<u>http://www.lns.cornell.edu/~bkh</u>)

SCINT03 at Valencia, Spain, Ren-yuan Zhu, Caltech

BGO Quality Improvement

Z.Y. Wei et al., Nucl. Instr. and Meth. A302 (1991) 69.

P.NSTITUTF 01189 L3 RFQ Calibration System An accelerator & a Li target provide 17.6 MeV γ -rays 14 180 mm 8235 **Magnet Yoke** Coil **RR24** 5425. Muon Chambers 4010 **Muon Filter** 2530 Support Tube Hadron Calorimeter Barre Forward-Backward e-Muon Chambers Luminosity Monitor SMD 80 KeV/ADC chan H- Ion Source RFQ, HEBT Neutralizer **Beam Pipe** Li Target

September 11, 2003

SCINT03 at Valencia, Spain, Ren-yuan Zhu, Caltech

L3 BGO Calibration

With 17.6 MeV γ -ray from RFQ and Bhabha Electrons

Contribution	"Radiative"+Intrinsic	Temperature	Calibration	Overall
Barrel	0.8%	0.5%	0.5%	1.07%
Endcaps	0.6%	0.5%	0.4%	0.88%

PWO Light Output Variation

Damage and Recovery Causes Complication

PWO Radiation Damage

Radiation induced absorption caused by color center formation, but no damage in scintillation mechanism

CMS ECAL Monitoring System

Initial calibration on test beam (as much crystals as possible)

In situ calibration with physics ($W \rightarrow e^+n$, $Z \rightarrow e^+e^-$): using E/p allows an inter-calibration of 0.5% in 35 days at low luminosity.

Monitoring evolution of crystal response by light injection system

Δ (T) versus Δ (LY)

Sensitivity and Linearity

\rightarrow 440 nm is chosen for the best linearity

September 11, 2003

Ti:Sapphire Laser with Two Wavelengths

- Short term r.m.s 1.7%, or 15 uJ.
- Peak to peak variation 15%, corresponding to overall r.m.s. 3.7%.
- Specification: r.m.s. <10%.
- Drifting caused by power supply, temperature: air condition needed.

Before/after beam irradiation: 10% variation in light output

SCINT03 at Valencia, Spain, Ren-yuan Zhu, Caltech

Summary

- Because of the total absorption, crystal calorimetry provides good resolution for electron and photon measurement, and thus excellent physics potential.
- To reach its physics potential, good radiation resistance of crystal scintillators is crucial for crystal calorimetry.
- Mass produced crystals, however, may suffer from radiation damage, which may have to be taken care of by a light monitoring system and precision calibration *in situ* with physics.