

Long Term Recovery of Seven PWO Crystals

Ren-yuan Zhu
California Institute of Technology

Introduction

- 20 endcap and 5 barrel PWO crystals went through (1) thermal annealing at 200°C, (2) irradiations by γ-ray at 15, 100, 400 and 9k rad/h until equilibrium and (3) short term (300 hours) recovery after 9 krad/h.
- As reported on Mar 25, 2003, 25 PWO crystals belong to three types. While type II crystals are good for the barrel dose rates (15 rad/h), type I crystals are more radiation hard and good enough for the endcaps (500 rad/h). One type III crystal has problem for monitoring with 440 nm light, so should be rejected. All samples recover after irradiation.
- Two issues discussed during last ECAL week: (1) stability of PWO crystal after 200°C thermal annealing, and (2) long term recovery time constant.
- 7 samples (5 type I and 2 type II) went through long term (160 days) recovery test. 15 crystals returned to CERN.

Thermal Annealing

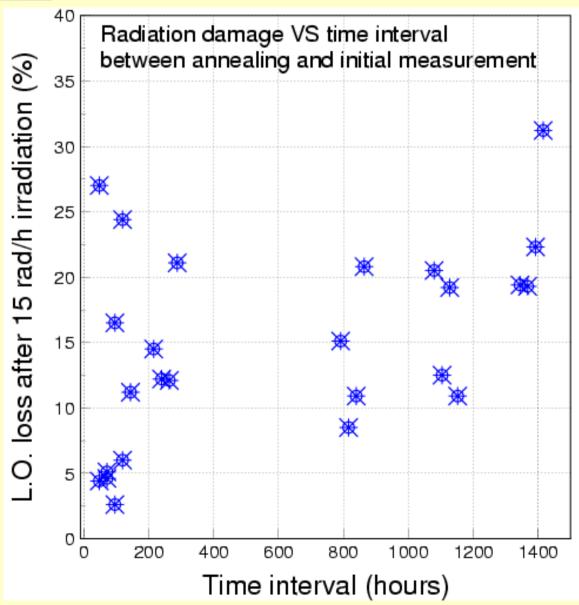
- Rigorous temperature control both in amplitude and slope:
 - From RT to 200°C: 200 minutes;
 - Maintain at 200°C: 240 minutes;
 - From 200°C to 25°C: 400 minutes.
- Crystals are kept in dark at RT (18°C) after annealing. The minimum time between annealing and the 1st measurement is 48 hours.
- Question: Does the length of waiting time between the measurement and the end of annealing affect measurement result?

Summary of Light Output

					410			
Sample	L.O.	(1/MeV)		ion(%)	Δt^*		15 rad/h	
ID	p.e.	photon	$\frac{50 \text{ns}}{1 \mu \text{s}}$	$\frac{100 \text{ns}}{1 \mu \text{s}}$	(hours)	L.O.(%)	${ m v}_{max}^{dam}(\%/{ m h})$	$ au_d$ (h)
B2467	7.9	53.8	79.7	96.2	120	76.4	-6.9	3.3
B2466	6.9	47.6	80.9	97.1	96	83.5	-7.3	2.3
B2456	6.3	43.4	77.8	93.6	240	87.8	-4.8	2.3
P7903	5.8	40.0	86.2	98.3	48	95.6	-0.25	15.9
P7654	4.8	33.1	81.3	93.9	72	95.4	-0.22	18.4
P7566	5.0	34.5	88.0	98.0	96	97.4	-0.09	20.7
P7557	4.8	33.1	89.6	97.9	120	94.0	-0.35	17.3
P7467	5.7	39.3	85.9	98.2	144	88.8	-0.70	15.7
B2464	7.6	52.4	81.8	97.4	48	73.0	-6.6	3.9
B2458	7.0	48.3	81.1	95.6	288	78.9	-3.7	5.7
B2457	6.4	44.1	81.2	95.3	264	87.9	-3.9	2.6
B2455	5.7	39.3	79.7	95.3	216	85.5	-7.2	1.94
B2436	6.3	43.4	79.7	95.3	864	79.2	-3.6	5.5
B2434	6.2	42.8	80.9	96.8	840	89.1	-1.4	7.0
B2433	6.0	41.4	81.7	96.7	816	91.5	-1.3	6.1
B2432	5.8	40.0	83.1	96.6	792	84.9	-1.9	7.6
B2409	5.5	37.9	88.7	98.2	1152	89.1	-0.88	11.4
B2408	6.6	45.5	83.6	97.0	1128	80.8	-1.8	10.3
B2407	6.1	42.1	83.1	96.9	1104	87.5	-1.2	10.4
B2406	6.6	45.5	82.9	97.1	1080	79.5	-3.3	5.8
B2382	6.5	44.8	84.8	93.9	1416	68.8	-3.5	8.7
B2381	7.2	49.7	86.8	93.4	1392	77.7	-1.8	11.9
B2376	7.4	51.0	80.0	94.7	1368	80.7	-1.6	11.6
B2375	6.1	42.1	73.4	92.2	1344	80.6	-2.1	8.9
B2465	5.4	37.2	84.9	96.2	72	94.9	_	
		: t a a 1 1 .		1:				

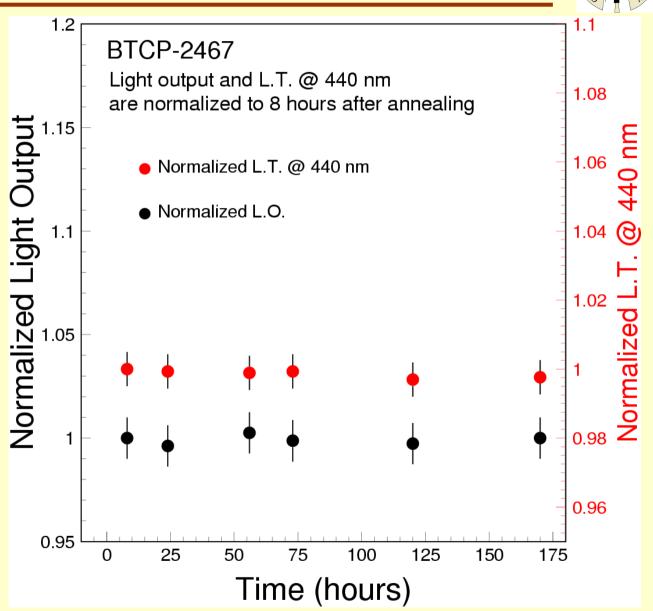
Type I: 5–20% loss @15 rad/h

Type II: 10– 25% loss @15 rad/h

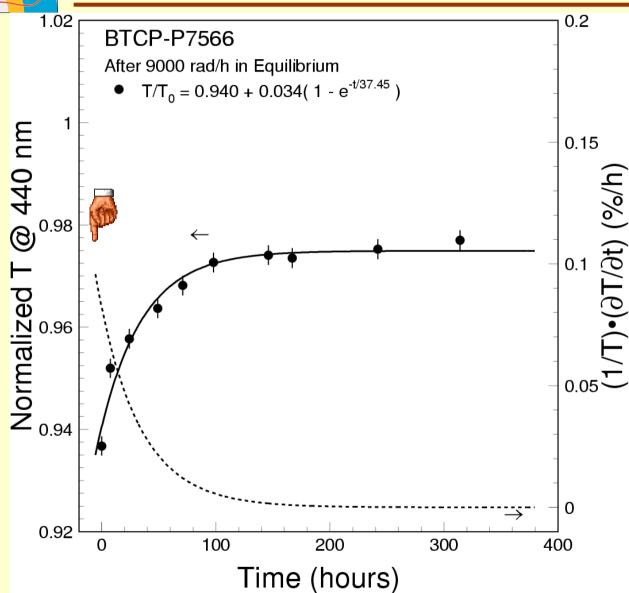

Waiting time: at least 48h

^{*} time interval between annealing and initial measurement.

LO loss versus Waiting Time


No Correlation between the LO loss and the time between the ending of the thermal annealing and the start of the initial 1st measurement.

PWO Stable after Annealing

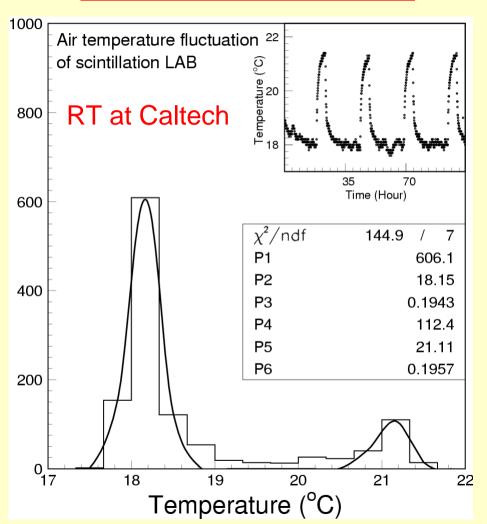

No variations in either light output or **longitudinal** transmittance was observed 8 hours after the thermal annealing procedure.

Longitudinal Transmittance Recovery

Short Term (two weeks) Recovery

ECAL monitoring takes 30 minutes to cover entire calorimeter *in situ*.

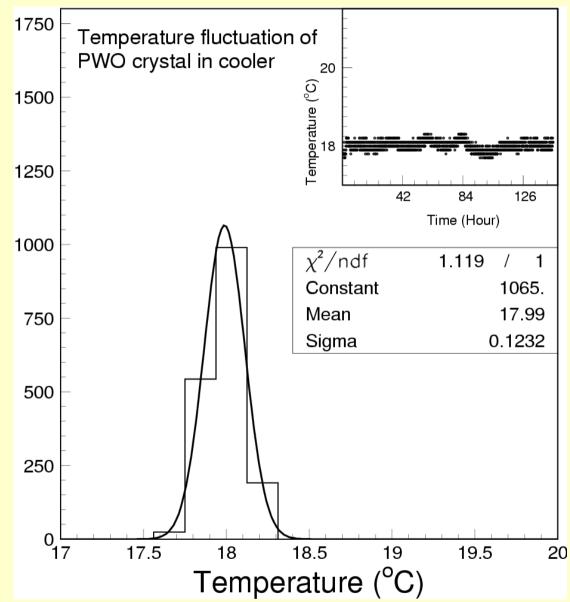
The maximum recovery speed and time constant are measures of the monitor-ability of the crystal.



Summary: Short Term LT Recovery

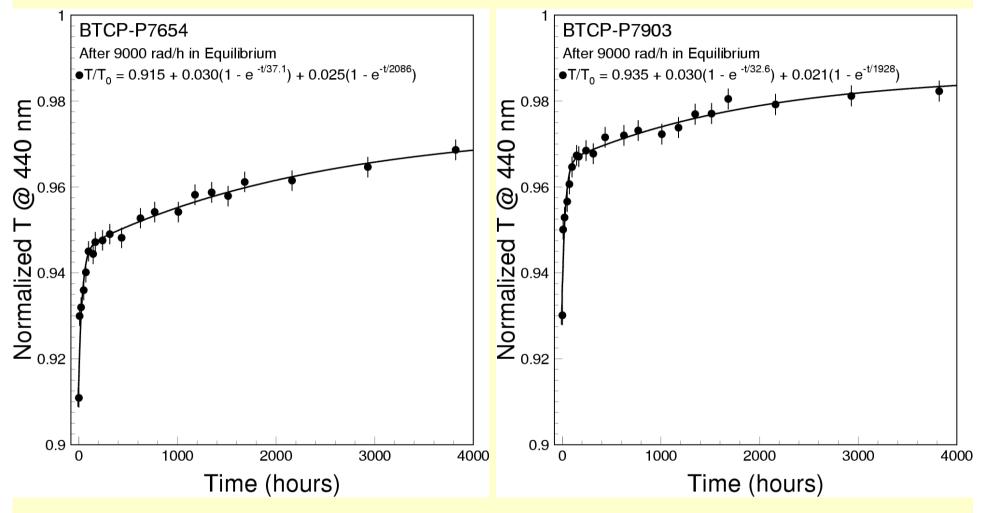
	ID	ΔT (%)	\mathbf{F}_{rec} (%)	v _{rec} ^{max} (%/h)	$ au_{rec}$ (h)
E	32467	9.4	50.0	0.09	52.6
В	2466*	5.8	60.3	0.16	22.8
F	32456	6.4	54.7	0.07	47.5
F	27903	6.5	47.7	0.10	32.6
F	27654	8.4	35.7	0.09	37.1
F	27566	6.0	56.7	0.09	37.5
F	27557	6.5	50.8	0.06	51.9
F	27467	7.0	52.9	0.07	59.9
E	32464	29.3	52.2	0.83	25.9
E	32458	19.8	57.1	0.40	35.0
F	32457	18.9	52.4	0.41	30.1
F	32455	22.7	35.6	0.36	26.5
E	32436	51.0	38.4	0.96	41.5
F	32434	30.1	53.8	0.75	31.0
F	32433	17.6	57.9	0.95	29.5
F	32432	38.1	49.1	0.95	31.9
F	32409	29.0	40.7	0.38	43.8
E	32408	30.2	46.4	0.51	39.2
E	32407	26.5	47.6	0.49	34.4
E	32406	33.0	33.2	0.54	31.1
F	32382	42.9	48.7	0.85	42.8
F	32381	33.3	47.1	0.71	33.1
F	32376	35.5	43.9	0.79	30.5
_ F	32375	33.9	42.8	0.69	31.7
	D	c 05	000 1/1	11 /1 C	0.1 1/1

All samples recover !!!



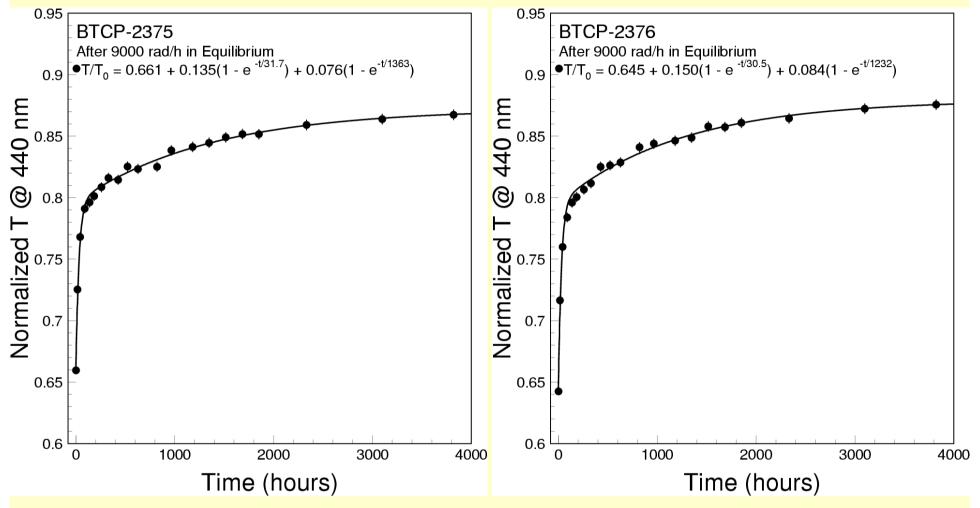
^{*} Recovery from 35,000 rad/h, all others from 9 krad/l

Long Term Recovery under 18°C



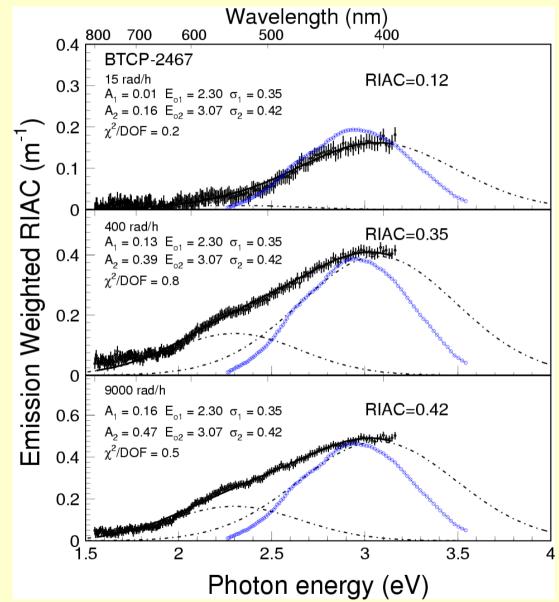
Two type II samples, B2375, and B2376, and five type I samples went through a long term recovery test for 160 days. Since February, they are stored in a cooler, which keeps temperature at 18°C with 0.1°C precision.

LT Recovery: Type I



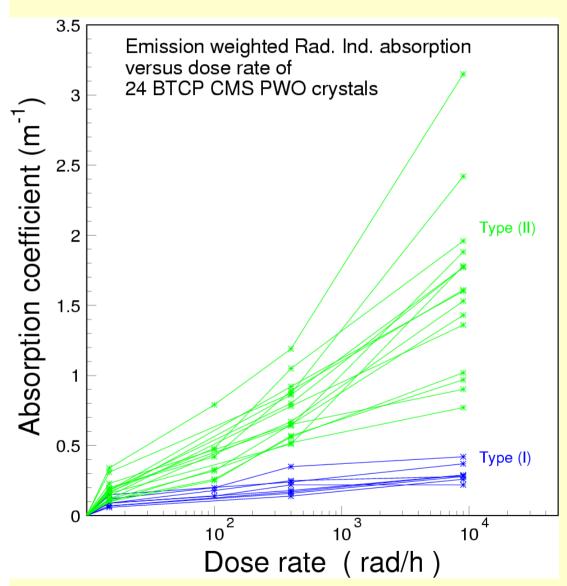
Small Damage and 2 Time Constants: ~40 h and ~1,950 h

LT Recovery: Type II



Large Damage and 2 Time Constants: ~30 h and ~1,300 h

Emission Weighted RIAC (I)

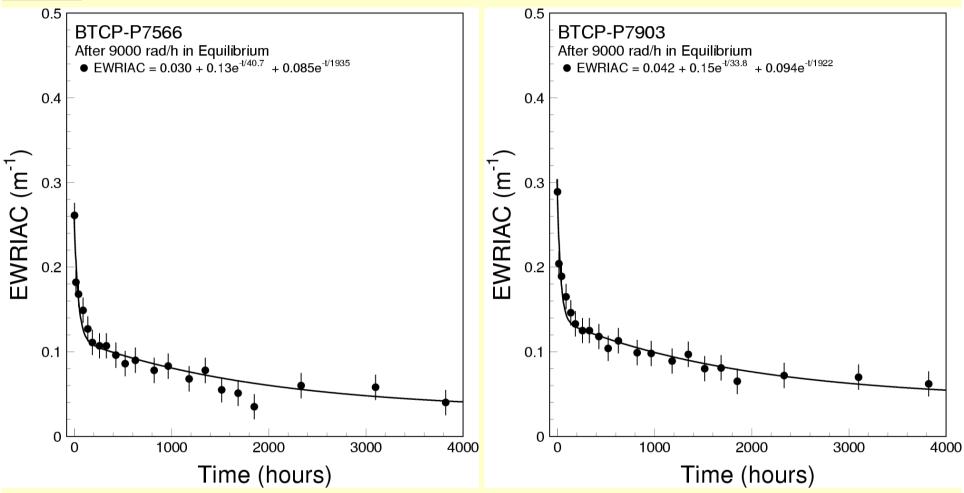


Sample	Do	ose Rat	e (rad,	/h)
ID	15	100	400	9000
B2467	0.12	0.20	0.35	0.42
B2466	0.09	0.14	0.22	0.22
B2456	0.09	0.18	0.25	0.28
P7903	0.09	_	0.18	0.29
P7654	0.15	_	0.24	0.37
P7566	0.06		0.14	0.26
P7557	0.07	_	0.17	0.29
P7467	0.07	_	0.16	0.28
B2464	0.20	0.42	0.89	1.61
B2458	0.11	0.26	0.56	1.02
B2457	0.10	0.25	0.57	0.97
B2455	0.23	0.47	0.65	0.90
B2436	0.34	0.79	1.19	3.15
B2434	0.12	0.32	0.65	1.43
B2433	0.10	0.33	0.52	0.77
B2432	0.17	0.48	1.05	1.96
B2409	0.12		0.69	1.53
B2408	0.18		0.92	1.60
B2407	0.14		0.78	1.36
B2406	0.16		0.86	1.79
B2382	0.31		0.87	2.42
B2381	0.18		0.80	1.77
B2376	0.19		0.64	1.88
B2375	0.16	_	0.51	1.78

Emission Weighted RIAC (II)

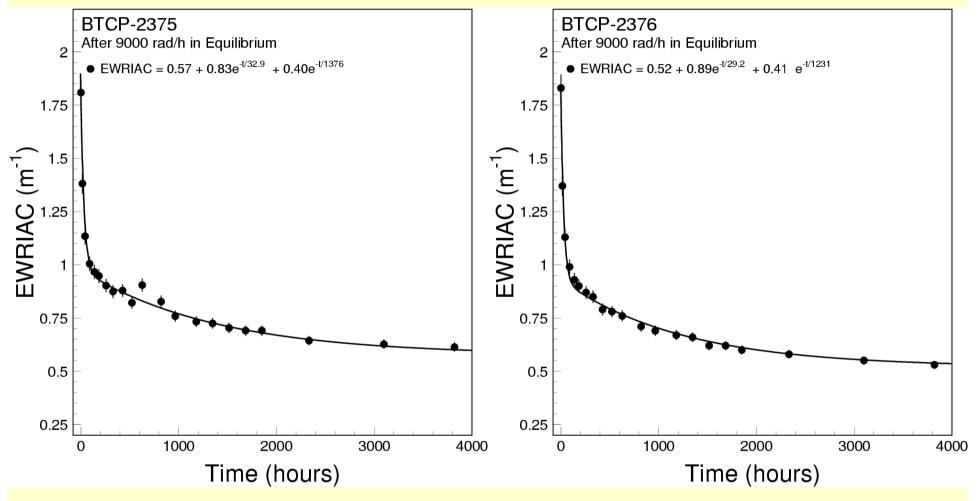
25 Crystals: 3 Types

Type I: 2456, 2466 and 2467 and all 5 barrel samples: P7467, P7557, P7566, P7654, P7903.


Type II: All other endcap samples, except that in I and III;

Type III: 2465.

EWRIAC Recovery: Type I



Small Damage and 2 Time Constants: ~40 h and ~1,950 h

EWRIAC Recovery: Type II

Large Damage and 2 Time Constants: ~30 h and ~1,300 h

Summary of Long Term Recovery

$$Fit: \frac{T}{T_o} = A_0 - A_1(1 - e^{-t/\tau_1}) - A_2(1 - e^{-t/\tau_2})$$

Sample	1-A ₀	$\mathbf{F_1}$	$ au_1$	F_2	$ au_2$	F_{∞}			
ID	(%)	(%)	(hour)	(%)	(hour)	(%)			
	Type II PWO Samples								
B2375	33.9	39.8	31.7	22.4	1,363	37.8			
B2376	35.5	42.3	30.5	23.7	1,232	34.0			
Average	34.7	41.1	31.1	23.1	1,298	35.9			

Type I PWO Samples									
P7467	7.0	48.6	59.9	22.9	1,847	28.5			
P7557	6.7	49.3	52.0	37.3	1,897	13.2			
P7566	6.1	54.1	37.5	39.3	1,926	6.6			
P7654	8.5	35.3	37.1	29.4	2,081	35.3			
P7903	6.5	46.2	32.6	32.3	1,928	21.5			
Average	7.0	46.7	43.8	32.2	1,937	21.1			

 F_i denotes the fraction of corresponding component.

A residual component with longer recovery time constant is at 20 to 30% level for type I and II crystals respectively

Recovery of longitudinal transmittance at 440 nm and EWRIAC are consistent.

$$EWRIAC = A_0 + A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}$$

$$A_{sum} = A_0 + A_1 + A_2$$

Sample	A_{sum}	F_1	$ au_1$	F_2	$ au_2$	F_{∞}	
ID	(m^{-1})	(%)	(hour)	(%)	(hour)	(%)	
Type II PWO Samples							
B2375	1.80	46.1	32.9	22.2	1,376	31.7	
B2376	1.82	48.9	29.2	22.5	$1,\!231$	28.6	
Average	1.81	47.5	31.1	22.4	1,304	30.2	

Type I PWO Samples									
P7467	0.29	52.1	62.3	25.7	1,836	22.2			
P7557	0.29	51.7	58.8	34.5	1,896	13.8			
P7566	0.25	53.1	40.7	34.7	1,935	12.2			
P7654	0.36	41.7	35.6	25.0	2,065	33.3			
P7903	0.29	52.4	33.8	32.9	1,922	14.7			
Average	0.30	50.2	46.2	30.6	1,931	19.2			

 F_i denotes the fraction of corresponding component.

Summary

- No variations in either light output or longitudinal transmittance for measurements 8 hours after the 200°C thermal annealing.
- PWO recovery measured under 18°C in 160 days can be described by two time constants: few tens hours and few thousands hours. Type I crystal has longer recovery time constant.
- A residual component at 20/30% level may have even longer recovery time constant.