

Temporal Response of Ultrafast Inorganic Scintillators for future HEP Applications

Chen Hu, Liyuan Zhang and Ren-Yuan Zhu California Institute of Technology

September 22, 2022

Presented in the SCINT 2022 Conference, Santa Fe

Application of Ultrafast Crystals

Figures of merit for TOF: light yield in the 1st ns & the ratio between fast and total

Mu2e-I: 1,348 CsI of 34x34x200 mm³ Mu2e-II: 1,940 BaF₂:Y

MANK K K K

Mu2e-II: arXiv:1802.02599

Concept of an ultrafast crystal-based front imager proposed for future Free-Electron Laser facilities

GHz Hard X-ray Imaging for FE	L 2 ns and 300 ps inter-f	2 ns and 300 ps inter-frame time requires ultrafast sensor						
	/	1						
Performance	Type I imager	Type II imager						
X-ray energy	up to 30 keV	42-126 keV						
Frame-rate/inter-frame time	0.5 GHz / 2 ns	3 GHz / 300 ps						
Number of frames per burst	≥ 10	10 - 30						
X-ray detection efficiency	above 50%	above 80%						
Pixel size/pitch	≤ 300 μm	< 300 μm						
Dynamic range	10 ³ X-ray	≥ 10 ⁴ X-ray						
	Photons/pixel/frame	Photons/pixel/frame						
Pixel format	64 × 64 ^a (scalable to 1 Mpix)	1 Mpix						

Fast Scintillator Screen

9/22/2022

9/22/2022

BaF₂:Y for Ultrafast Calorimetry

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

EWLT

300 nm

89.9%

89.5%

87.1%

88.4%

88.3%

300

450

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF_2 : Y and BaF_2 crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

Presented by Ren-Yuan Zhu of Caltech in the SCINT 2022 Conference, Santa Fe, NM

Ultrafast and Radiation Hard BaF₂

9/22/2022

 BaF_2 has an ultrafast scintillation component @ 220 nm with 0.5 ns decay time and a much larger slow component @ 300 nm with 600 ns decay time.

Slow suppression may be achieved by rare earth doping, and/or solar-blind photo-detectors

BaF₂ shows saturated damage from 10 krad to 100 Mrad, indicating good radiation resistance against γ-rays

 $\begin{array}{l} \text{BaF}_2 \text{ also survives after proton} \\ \text{irradiation up to } 9.7 \times 10^{14} \text{ p/cm}^2, \\ \text{ and neutron irradiation up to} \\ 8.3 \times 10^{15} \, n_{\text{eq}}/\text{cm}^2 \end{array}$

A Puzzle of Long Decay Observed at APS

NIM A 940 (2019) 223-229

The decay time of BaF₂ measured at APS for septuplet X-ray bunches with 2.83 ns spacing is longer than 1 ns. This is suspected to be caused by the very long cable used between MCP-PMT and MSO

An MCP-Based Test Bench

Rise, decay and FWHM obtained by fitting temporal response

9/22/2022

MCP-PMT Comparison

Photodetector	Active diameter (mm ²)	Spectral range (nm)	Peak Sen. (nm)	Gain	Rise time (ns)	FWHM (ns)
Photek MCP PMT240	40	160-850	280-450	1×10 ⁶	0.180	0.82
Hamamatsu MCP- PMT R3809U-50	11	160-850	430	3×10 ⁵	0.160	0.30
Photek MCP PMT110	10	160-850	280-450	1×10 ⁴	0.065	0.11
Photek MCP PMT210	10	160-850	280-450	1×10 ⁶	0.085	0.15
Hamamatsu PMT R2059	46	160-650	450	2×10 ⁷	1.3	

Ultrafast Inorganic Scintillator Samples

8 ultrafast crystals used in this investigation

	BaF ₂ :Y	BaF ₂	ZnO:Ga	YAP:Yb	YAG:Yb	Ga ₂ O ₃	Lu ₂ O ₃ :Yb	Cs ₂ ZnCl ₄
Producer	BGRI	BGRI	FJIRSM	Dongjun	Dongjun	Tongji	RMD	RMD
Dimension (mm ³)	Φ10×10	Φ10×10	33×30×2	Ф40×2	10×10×5	7×7×2	Ф9×1	6×6×7

Ultrafast response of 0.2/0.6/0.8 ns observed for BaF₂ and BaF₂:Y crystals

Temporal Response of BaF₂ & BaF₂:Y

Lu₂O₃:Yb ceramic of 9.4 g/cc shows an ultrafast decay time of 1.1 ns by Am-241 with negligible slow component confirmed by light output measurement

Temporal response of YAP:Yb & YAG:Yb

YAP:Yb & YAG:Yb show a decay time of 1.1 ns and 1.8 ns by Am-241

Fast and Ultrafast Inorganic Scintillators

arXiv: 2203.06788

	BaF ₂	BaF ₂ :Y	ZnO:Ga	Lu ₂ O ₃ :Yb	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	9.42	5.35	4.56	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	2490	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	0.81	2.59	3.53	2.51	1.14	1.45	2.59	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	1.72	2.45	2.76	2.20	2.07	2.15	2.45	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	18.1	23.1	25.2	20.9	20.9	20.6	23.1	21.5	19.5	27.8
Z _{eff}	51.0	51.0	27.7	67.3	32.8	29.3	27.8	63.7	58.7	32.8	50.6	57.1	32.8
dE/dX (MeV/cm)	6.52	6.52	8.34	11.6	7.91	7.01	8.82	9.55	9.22	7.91	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	370	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	2.0	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.95	0.19 ^d	0.36 ^d	6.5 0.5	100	35 ^e 48 ^e	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	280	57 ^d	110 ^d	2,100	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 0.5	600 0.5	<1	1.1 ^d	1.5	4	148 6	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	170	28 ^d	24 ^d	43	740	240	391	640	125	318
LY in 1 st ns /Total LY (%)	9.2	60	31	61	49	22	2.0	2.5	1.0	3.3	1.9	1.3	1.3
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.127	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by Alpha particles; ^e 0.3 Mg at% co-doping; ^f Lu_{0.7}Y_{0.3}AlO₃:Ce. 9/22/2022 Presented by Ren-Yuan Zhu of Caltech in the SCINT 2022 Conference, Santa Fe, NM

Summary

- Development of ultrafast heavy crystals with sub-nanosecond decay time is important to break the ps timing barrier for future HEP TOF system and ultrafast calorimetry, as well as GHz hard X-ray imaging. Temporal response of various ultrafast crystals, such as BaF₂ and Lu₂O₃:Yb etc., are measured by an MCP-PMT based test bench.
- BaF₂ and BaF₂:Y show an ultrafast decay of 0.5 ns responding to Na-22, which is much sorter than the 1.2 ns data measured at the APS due to a 15 m long cable between MCP-PMT and MSO.
- Lu₂O₃:Yb ceramic sample shows a decay time of 1.1 ns with negligible slow component. With its 9.4 g/cc density, it is an interesting fast inorganic scintillator.
- YAP:Yb and YAG:Yb samples show decay time of 1.7 and 2.1 ns, shorter than the APS data which were affected by the long cable.
- Measurements will continue to complete this investigation.

Acknowledgements: DOE HEP Award DE-SC0011925