

Search for Scintillation in Doped Lead Fluoride Crystals

<u>Rihua Mao</u>, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology

October 29, 2009

Paper N40-2, 2009 NSS/MIC at Orlando, USA

Introduction

This work focuses on a search for scintillation in doped lead fluoride (PbF₂) for the homogeneous hadronic calorimeter detector concept, where both Cherenkov and scintillation lights are measured for good hadronic energy resolution.

\succ Why PbF₂?

- High density: 7.77 g/cc and short λ_l : 21 cm.
- Good UV transparency down to 250 nm for Cherenkov.
- Can be grown for large size of 20 cm.
- Potentially low cost (\$2/cc) : melting point at 824°C and low material cost: 1/3 of BGO.
- Lead fluoride samples with rare earth doping were grown by Bridgman method. Photo- and X- luminescence, decay kinetics and γ-ray excited anode current and pulse height spectrum were measured.

Cherenkov Needs UV Transparency

Cherenkov figure of merit

Using UG11 optical filter Cherenkov light can be effectively selected with negligible contamination from scintillation

PbF₂ Samples

- A total of 116 samples with various rare earth doping were grown by vertical Bridgman method at SIC and Scintibow.
- SIC samples are of 1.5 X_0 (14 mm) cube, while most of the Scintibow samples are of Φ 22 x 15 mm.

Photo- and X-luminescence

- Photo luminescence was measured by using Hitachi F-4500 fluorescence spectrophotometer.
- An AMTPEK portable X-ray tube was used for the Xluminescence measurement.

Luminescence: Er & Eu Doped PbF₂

Luminescence: Gd & Ho doped PbF₂

Luminescence: Pr & Sm Doped PbF₂

Luminescence: Tb doped PbF₂

NSS09 Paper N40-2, Rihua Mao, Caltech

10/29/2009

Verified with BGO & CsI(TI)

Decay time consists with well known values

Decay Time: Ho and Sm Doped PbF₂

Decay Time: Tb Doped PbF₂

Anode Current Measurement

Distance between source and sample: 2 cm

Anode Current: PWO & Un-doped PbF₂

PWO: L.O. = 20 p.e./MeV, anode current = 240 nA

Anode Current: All Samples

Summary of Anode Current

ID	Anode current (nA)	Size (mm)	Doping
Scintibow-1	51	18 x12 x10	Eu
Scintibow-18	52	Ф22Х15	Eu/Gd
Scintibow-27	53	Ф20Х15	Eu/Tb
Scintibow-B19	56	Ф20Х15	Eu/Tb/Na
Scintibow-B21	83	Ф22Х15	Eu/Bi/Na
Scintibow-B23	73	Ф20Х15	Eu/Bi/Na
Undoped	42	14 x 14 x14	

y-ray Excited Pulse Height Spectrum

y-ray Excited PHS: PWO


```
2000
```

TISTITUTE OF

y-ray Excited PHS: Doped PbF₂

Summary

- Lead fluoride crystal samples doped with various rare earth dopant were grown by Bridgman method.
- Consistent photo and x-ray luminescence found in samples with Er, Eu, Gd, Ho, Pr, Sm and Tb doping.
- The decay time of doped samples was found to be very long at ms scale as expected from the f-f transition of the rare earth elements.
- While some doped samples show anode current larger then the un-doped samples, their y-ray excited pulse height spectra were found identical to un-doped sample, indicating no scintillation light.
- Investigation will continue to search for scintillation in doped lead fluoride and other host materials.