

Monitoring LSO/LYSO Crystal Based Calorimeters

Fan Yang, Liyuan Zhang, Ren-Yuan Zhu

California Institute of Technology

O5-02, Calor2014, April 11, 2014, Giessen, Germany

Introduction

- Variations of transparency in thin LYSO plates is small because of their superb radiation hardness. Long crystals were studied to understand LYSO monitoring.
- In general monitoring can be carried out by taking two approaches:
 - Monitoring variations of crystal transparency only by injecting light pulses at the wavelength close to its emission peak, e.g. CMS at LHC;
 - Monitoring both photo-luminescence production and crystal transparency by injecting light pulses at the wavelength close to its excitation peak, e.g. PHENIX at RHIC.
- The 2nd approach requires high pulse intensity but may have some advantages for LYSO monitoring.

LYSO Samples Investigated

CPI-LYSO-L	Sample ID	Dimension (mm ³)	Polish
CTI-LSO-L	CPI-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SG-LYSO-L	CTI-LSO-L	$25 \times 25 \times 200$	Six faces polished
	SG-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SIC-LYSO-L	SIC-LYSO-L	$25 \times 25 \times 200$	Six faces polished
SIPAT-LYSO-L	SIPAT-LYSO-L	$25 \times 25 \times 200$	Six faces polished
0 / 2 0 / 1 6 7 9 9 10 11 12 13 14 15 16 17 18 19 20 21 2 mm			

Experiments

- Properties measured at room temperature before after irradiation: longitudinal transmittance (LT) & light output (LO).
- Step by step irradiations by γ-rays: 100, 1K, 10K, 100K and 1M rad.

Apr 11, 2014

Excitation, Emission & Transmittance

Photo-luminescence spectra for 20 cm samples with peaks:

Excitation: 358 nm

Emission: 402 nm

The cut-off wavelength of the transmittance is red-shifted because of self-absorption.

Emission (PL), LT and EMLT

EMLT (Emission Multiplied Longitudinal Transmittance): $EMLT(\lambda) = Em(\lambda) \times LT(\lambda).$

The average peak position of EMLT is at 423 nm.

The average FWHM of EMLT is 48 nm: from 404 nm to 452 nm.

EWLT (Emission Weighted Longitudinal Transmittance), $EWLT = \int Em(\lambda)LT(\lambda)d\lambda$, represents the transparency for the entire emission spectrum.

Apr 11, 2014

Initial LO and LRU

Light output (LO) is defined as the average of seven measurements uniformly distributed along the sample.

All samples have good LO with light response uniformity (LRU) of better than 3%: the self-absorption effect is compensated by [Ce].

Excellent Radiation Hardness in LT

Consistent & Small Damage in LT

Larger variation @ shorter λ

O5-02, Calor2014, Giessen, Germany

Excellent Radiation Hardness in LO

INSTITUTE OF IL

Apr 11, 2014

LT Loss vs. LO Loss after Irradiation

Monitoring Sensitivity vs. Wavelength

The monitoring sensitivity increases at shorter wavelengths because of larger variation in transparency.

A shorter wavelength is preferred for a better sensitivity. A longer wavelength is preferred for a larger monitoring light signal.

The EMLT peak position at ~423 nm would be the choice. Blue DPSS lasers, however, are expensive.

O5-02, Calor2014, Giessen, Germany

Monitoring with Excitation Light

laser for plastic scintillators.

Monitoring Sensitivity with EWLT

RMS/Mean represents the divergence between 5 vendors

Apr 11, 2014

Choice of Monitoring Wavelength

Consistent monitoring sensitivity is observed for both the EWLT for the entire emission spectrum and the wavelength close to the emission peak: 423 nm.

A divergence at 25% level for crystals from five different vendors is observed for both the EWLT and the wavelength close or shorter than the emission peak, which will be improved in massproduction.

Apr 11, 2014

A Tunable Laser Based Monitoring System

Plan to run at two wavelengths: 425 nm and 355 nm

LYSO-W Cell for Monitoring Test

Monitoring Insertion Test

Monitoring signal through WLS fiber coupled to PMT is 20,000 p.e. with $\sigma/E\sim14\%$ from 0.7 mJ laser pulses, indicating a total attenuation of about 110 dB. Up to 80,000 p.e. is achievable with 3 mJ pulse.

80,000 p.e. corresponds a dynamic range of 4 GeV in LYSO, or 20 GeV in Shashlik tower when laser is running at 3 mJ.

Another factor of 5 is needed to reach 100 GeV, requiring R&D on leaky fiber.

110 dB can be compared to 106/72 dB of PHENIX/CMS monitoring.

Summary

- □ LSO/LYSO crystals suffer from transparency loss, leading to light output loss. Variations of light output can be corrected by using variations of crystal response to monitoring light pulses.
- Two approaches may be used for LYSO monitoring. One uses a wavelength around the emission peak, which is adapted by CMS for monitoring PWO crystals at LHC. The other uses a wavelength at the excitation peak, which is adapted by PHENIX for monitoring plastic scintillators in a Shashlik ECAL at RHIC.
- The 2nd approach has three advantages: (1) crystal transparency is monitored with the entire emission spectrum;
 (2) crystal photo-luminescence production is also monitored and (3) cost-effective frequency tripled DPSS YAG laser at 355 nm is commercially available.
- The two approaches will be tested in the Shashlik Beam Test at Fermilab.

Cost-Effective UV Lasers at 355 nm

Frequency tripled DPSS YAG laser at 355 nm: @ \$50k http://rpmclasers.com/product/XHE%20355%20datasheet.pdf

Parameters	XHE11903	Opolette 355 II+UV	
Pulse energy (mJ) at 355 nm	2	0.06	
Repetition rate (Hz)	1 - 100	20	
Pulse width (ns)	3	5	
Pulse Stability (rms, %)	< 5	~20	
Divergency (full angle, mrad)	2	6	
Beam diameter (1/e2)	4	3	
Jitter (ns)	N/A	~ 1	
TEM quality (M2)	5	N/A	
Polarization	Random	Linear	
Pump source	Diodes	Pulsed lamp	
Cooling	Air	Internal water loop	
Dimensions (cm)	18×9×8	36×14×44	

Efficiencies in CMS and PHENIX Monitoring Systems

CMS ECAL Monitoring at 440/447 nm		PHENIX ECAL (Lead Scintillator) Monitoring at 355 nm					
	Fanout	Extra	Total		Fanout	Extra	Total
LSDS	0	13	13	LSDS	7.8	0.1	7.9
Optical Fiber (150M)	0	3	3	Optical Fiber (50M)	0	3	3
Level 2 (1:7)	8.5	8.5	17	Level 1 (1:21)	13.3	12.2	25.5
Level 1 (1:240)	24	15	39	Level 2 (1:38)	15.8	10.8	26.6
				Module Conv. Eff. (UV-VIS)	0	31.2	31.2
				Connections and extra	0	11.5	11.5
Total	32.5	39.5	72		36.9	68.8	105.7